

Structural Package for:

Granbois Residence

8440 SE 82nd St Mercer Island, WA 98052

Project No: \$230110-1

April 6, 2023

STRUCTURAL ENGINEER L120 ENGINEERING & DESIGN 13150 91ST PL NE KIRKLAND, WA 98034 CONTACT: MANS THURFJELL, PE PHONE: 425-636-3313 MTHURFJELL@L120ENGINEERING.COM

Project Number:	Plan Name:	Sheet Number:
S230110-1 Granbois		DC
Engineer:	Specifics:	Date:
НК	Design Criteria	4/6/2023

Gravity Criteria:

ROOF SYSTEM						
Live Load:						
Snow	25.0	psf				
Dead Load:						
Composite Roofing	2.0	psf				
19/32" Plywood Sheathing	2.5	psf				
Trusses at 24" o.c.	3.0	psf				
Insulation	1.8	psf				
(2) Layers 5/8" GWB	4.4	psf				
Misc/Mech	1.3	psf				
Total	15.0	psf				

EXTERIOR WALL S	SYSTE	М	
2x6 at 16" o.c.	1.7	psf	
Insulation	1.0	psf	
1/2" Plywood Sheathing	1.5	psf	
(2) layers 5/8" GWB	4.4	psf	
Misc	3.4	psf	
Total	12.0	psf	

FLOOR SYSTEM							
Live Load:							
Residential	40.0	psf					
Dead Load:							
Flooring	3.0	psf					
3/4" T & G Plywood	2.5	psf					
Floor Joists at 16" o.c.	2.5	psf					
Insulation	0.5	psf					
(1) Layers 5/8" GWB	2.2	psf					
Miscellaneous	psf						
Total	12.0	psf					

Code: IBC 2018

INTERIOR WALL SYSTEM	

Total	8.0	psf
Misc	2.0	psf
(2) Layers 5/8" GWB	4.4	psf
Insulation	0.5	psf
2x4 at 16" o.c.	1.1	psf

SEISMIC PARAMETERS:

Code Reference: ASCE 7-16

R = **6.5** Bearing Wall System, Wood Structural Panel Walls

Mapped Spectral Acceleration, Ss = 1.64 Mapped Spectral Acceleration, S1 = 0.62 Soil Site Class = D

WIND PARAMETERS:

Code Reference: ASCE 7-16 3asic Wind Speed (3 second Gust) = 100 mph Exposure : B Kzt = 1.90

SOIL PARAMETERS:

Soil Bearing Pressure = 3,500 psf competent native soil or structural fill 1/3 increase for short-term wind or seismic loading is acceptable Frost Depth = 18 in

pcf

Lateral Wall Pressures:

Unrestrained Active Pressure = 35 Restrained Active Pressure = 50

pcf Cantilevered walls

pcf Plate Wall Design/Tank Walls

Passive Pressure = **300** Soil Friction Coeff. = **0.5**

ASCE 7 Hazards Report

Address: 8440 SE 82nd St Mercer Island, Washington 98040

Standard: ASCE/SEI 7-22 **Risk Category:** II Soil Class: Default

Latitude: 47.530412 Longitude: -122.226341 Elevation: 329.5217954889228 ft (NAVD 88)

Wind

Results:

Data Source:	ASCE/SEI 7-22, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4
i,000,000-yeal MRI	154 Viipii
1 000 000-year MPL	151 \/mph
100,000-year MRI	136 Vmph
10,000-year MRI	118 Vmph
3,000-year MRI	109 Vmph
1,700-year MRI	104 Vmph
700-year MRI	98 Vmph
300-year MRI	92 Vmph
100-year MRI	83 Vmph
50-year MRI	78 Vmph
25-year MRI	74 Vmph
10-year MRI	67 Vmph
Wind Speed	98 Vmph

Date Accessed:

and Sagtion 26532

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-22 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years). Values for 10-year MRI, 25-year MRI, 50-year MRI and 100-year MRI are Service Level wind speeds, all other wind speeds are Ultimate wind speeds.

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-22 Section 26.2.

Default Seismic Site Soil Class: **Results:** $T_{\text{L}} \, : \,$ PGA_M: 0.75 6 S_{MS} : **S**_s : 1.64 1.8 S_{M1} : S₁ : 0.62 1.27 S_{DS} : 1.2 V_{S30} : 260 **S**_{D1} : 0.85

Seismic Design Category: D

 $\label{eq:MCER} \mbox{Vertical Response Spectrum} \\ \mbox{Vertical ground motion data has not yet been made} \\ \mbox{available by USGS.} \\$

Design Vertical Response Spectrum Vertical ground motion data has not yet been made available by USGS.

Data Accessed:

Date Source:

Wed Mar 15 2023

USGS Seismic Design Maps based on ASCE/SEI 7-22 and ASCE/SEI 7-22 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-22 Ch. 21 are available from USGS.

FRAMING CALCULATIONS

BEAM REFERENCE PER PLAN

FORTEWEB[®] JOB SUMMARY REPORT Granbois

Granbois

Roof						
Member Name	Results	Current Solution	Comments			
RB-1	Passed	1 piece(s) 4 x 8 DF No.2				
GT-1 (For Reactions Only)	Passed	1 piece(s) 8 3/4" x 36" 24F-V8 DF Glulam				
GT-2 (For Reactions Only) Passed 1 piece(s) 8 3/4" x 36" 24F-V8 DF Glulam						
2nd Floor						
Member Name	Results	Current Solution	Comments			
RH-1	Passed	1 piece(s) 5 1/2" x 7 1/2" 24F-V4 DF Glulam				
RH-2	Passed	1 piece(s) 4 x 8 DF No.2				
RH-3	Passed	1 piece(s) 6 x 8 DF No.2				
RH-4	Passed	1 piece(s) 4 x 8 DF No.2				
RH-5	Passed	1 piece(s) 4 x 8 DF No.2				
2J-1	Passed	1 piece(s) 18" TJI® 360 @ 16" OC				
2B-1	Passed	1 piece(s) 3 1/2" x 18" 2.2E Parallam® PSL				
2B-2	Passed	1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL				
2B-3	Passed	1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL				
2B-4	Passed	1 piece(s) 7" x 18" 2.2E Parallam® PSL				
2B-5	Passed	1 piece(s) 7" x 18" 2.2E Parallam® PSL				
2B-6	Failed	1 piece(s) 7" x 18" 2.2E Parallam® PSL	Support 1 failed reaction check due to insufficient bearing capacity.			
2B-7	Passed	1 piece(s) 3 1/2" x 18" 2.2E Parallam® PSL				
2B-8	Passed	1 piece(s) 3 1/2" x 18" 2.2E Parallam® PSL				
2B-10	Passed	1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL				
2B-11	Passed	1 piece(s) 7" x 14" 2.2E Parallam® PSL				
2B-12	Passed	1 piece(s) 3 1/2" x 14" 2.2E Parallam® PSL				
2B-13	Passed	1 piece(s) 3 1/2" x 14" 2.2E Parallam® PSL				
2B-14	Passed	1 piece(s) 4 x 10 DF No.2				
1st Floor						
Member Name	Results	Current Solution	Comments			
1C-1	Passed	1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL				
1C-2	Passed	1 piece(s) 7" x 7" 1.8E Parallam® PSL				
1H-1	Passed	1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam				
1H-2	Passed	1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam				
1H-3	Passed	1 piece(s) 5 1/2" x 13 1/2" 24F-V4 DF Glulam				
1H-4	Passed	1 piece(s) 5 1/2" x 12" 24F-V4 DF Glulam				
1H-5	Passed	1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam				
1H-6	Passed	1 piece(s) 4 x 8 DF No.2				
1H-7	Passed	1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam				
1B-1	Passed	1 piece(s) W14X53 (A992) ASTM Steel				
1B-2	Passed	1 piece(s) W14X53 (A992) ASTM Steel				
1B-3	Passed	1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL				
1B-4	Passed	1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL				
1B-5	Failed	1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL	Multiple Failures/Errors			
1B-6 (East West Seismic Condition)	Passed	1 piece(s) W14X43 (A992) ASTM Steel				
1B-6 (North South Seismic Condition)	Failed	1 piece(s) W14X43 (A992) ASTM Steel	Multiple Failures/Errors			
1B-7	Passed	1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL				

Basement						
Member Name	Results	Current Solution	Comments			
BH-1	Passed	1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam				
BH-2	Passed	1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam				
BB-1	Passed	1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL				

ForteWEB Software Operator
Harrison Kliegl
L120 Engineering
(425) 636-3313
hkliegl@l120engineering.com

Job Notes

4/6/2023 7:59:43 PM UTC ForteWEB v3.5 File Name: Granbois

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1109 @ 5' 11"	3281 (1.50")	Passed (34%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	878 @ 5' 3 3/4"	3502	Passed (25%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1606 @ 3' 1/4"	3407	Passed (47%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.036 @ 3' 1/4"	0.193	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.055 @ 3' 1/4"	0.290	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• A 0.9% decrease in the moment capacity has been added to account for lateral stability.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories	
1 - Trimmer - HF	3.00"	3.00"	1.50"	402	755	1157	None	
2 - Hanger on 7 1/4" DF beam	3.00"	Hanger ¹	1.50"	417	786	1203	See note 1	
• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger								

¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
2 - Face Mount Hanger	LUS46	2.00"	N/A	4-16d	4-16d		

· Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 5' 11"	N/A	6.4		
1 - Uniform (PSF)	0 to 6' 2" (Top)	10'	12.6	25.0	Roof Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Harrison Klieg L120 Engineering (425) 636-3313 hkliegl@I120engineering.com

Job Notes

4/6/2023 7:59:43 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Granbois Page 3 / 57

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4236 @ 36' 5 1/2"	8531 (1.50")	Passed (50%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	3810 @ 3' 5 1/2"	63998	Passed (6%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	51525 @ 18'	349693	Passed (15%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.081 @ 18' 3 13/16"	0.903	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.178 @ 18' 4 1/16"	1.806	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 0.80 that was calculated using length L = 36' 1 $1/2^{"}$.

• The effects of positive or negative camber have not been accounted for when calculating deflection.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - HF	5.50"	5.50"	1.50"	2512	1840	4352	Blocking
2 - Hanger on 36" DF beam	5.50"	Hanger ¹	1.50"	2467	1806	4273	See note 1

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments		
Top Edge (Lu)	36' 6" o/c			
Bottom Edge (Lu)	36' 6" o/c			

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
2 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A		
- Defer to manufacturer notes and instructions for proper installation and use of all connectors							

Refer to manufacturer notes and instructions for proper installation and use of all connectors

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 36' 5 1/2"	N/A	76.6		
1 - Uniform (PSF)	0 to 36' 11" (Front)	2'	15.0	25.0	Roof Load
2 - Point (lb)	18' (Front)	N/A	1080	1800	DL = 15psf*18*4 SL = 25psf*18*4

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com	

Overall Length: 24' 11"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6468 @ 5 1/2"	8531 (1.50")	Passed (76%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	7959 @ 21' 5 1/2"	63998	Passed (12%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	43898 @ 14' 3/8"	364101	Passed (12%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.039 @ 12' 10 1/16"	0.603	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.077 @ 12' 10 5/8"	1.206	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

- Critical positive moment adjusted by a volume factor of 0.84 that was calculated using length L = 24' 1 1/2".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Hanger on 36" HF beam	5.50"	Hanger ¹	1.50"	3200	3452	6652	See note 1
2 - Stud wall - HF	5.50"	5.50"	3.02"	5347	5367	10714	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	24' 6" o/c				
Bottom Edge (Lu)	24' 6" o/c				
Maximum allowable bursing intervals based on analised and					

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
1 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A		
Pafer to manufacturer notes and instructions for proper installation and use of all connectors							

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	5 1/2" to 24' 11"	N/A	76.6		
1 - Uniform (PSF)	0 to 21' (Front)	10'	15.0	25.0	Roof Load
2 - Point (lb)	21' (Front)	N/A	2467	1806	Linked from: GT-1 (For Reactions Only), Support 2
3 - Uniform (PSF)	21' to 24' 11" (Front)	18'	15.0	25.0	Roof Load

ForteWEB Software Operator Job Notes Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@I120engineering.com

2nd Floor, RH-1

1 piece(s) 5 1/2" x 7 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4011 @ 0	5363 (1.50")	Passed (75%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	3453 @ 9"	8381	Passed (41%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	8682 @ 3'	11778	Passed (74%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.193 @ 4' 3"	0.308	Passed (L/575)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.316 @ 4' 3 1/16"	0.463	Passed (L/351)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/360) and TL (L/240).

• A 0.7% decrease in the moment capacity has been added to account for lateral stability.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 9' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	1558	2453	4011	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	666	1010	1676	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 9' 3"	N/A	10.0		
1 - Uniform (PSF)	0 to 3'	18'	15.8	25.0	Roof Load
2 - Point (lb)	3'	N/A	1080	1800	Girder Truss = DL=15psf*4*18 SL=25psf*4*18
3 - Uniform (PSF)	3' to 9' 3"	2'	15.8	25.0	Roof Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@120engineering.com Job Notes

2nd Floor, RH-2 1 piece(s) 4 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	785 @ 0	3281 (1.50")	Passed (24%)		1.0 D + 1.0 S (All Spans)
Shear (Ibs)	661 @ 8 3/4"	3502	Passed (19%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1815 @ 4' 7 1/2"	3387	Passed (54%)	1.15	1.0 D + 1.0 S (All Spans)
Vert Live Load Defl. (in)	0.093 @ 4' 7 1/2"	0.308	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Vert Total Load Defl. (in)	0.157 @ 4' 7 1/2"	0.313	Passed (L/706)		1.0 D + 1.0 S (All Spans)
Lat Member Reaction (lbs)	207 @ 9' 3"	N/A	Passed (N/A)	1.60	1.0 D + 0.6 W
Lat Shear (lbs)	188 @ 5"	4872	Passed (4%)	1.60	1.0 D + 0.6 W
Lat Moment (Ft-lbs)	478 @ mid-span	2425	Passed (20%)	1.60	1.0 D + 0.6 W
Lat Deflection (in)	0.124 @ mid-span	0.925	Passed (L/892)		1.0 D + 0.6 W
Bi-Axial Bending	0.48	1.00	Passed (48%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (5/16").

Lateral deflection criteria: Wind (L/120)

• A 1.5% decrease in the moment capacity has been added to account for lateral stability.

• Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	322	462	785	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	322	462	785	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

Lateral Connections									
Supports	Plate Size	Plate Material	Connector	Type/Model	Quantity	Nailing			
Left	2X	Hem Fir	Nails	10d (0.128" x 3") (End)	3				
Right	2X	Hem Fir	Nails	10d (0.128" x 3") (End)	3				

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 9' 3"	N/A	6.4		
1 - Uniform (PSF)	0 to 9' 3"	4'	15.8	25.0	Roof Load

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	3'	24.9	

ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib.
 IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com		Weyerhaeuser

2nd Floor, RH-3 1 piece(s) 6 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	554 @ 0	5156 (1.50")	Passed (11%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	486 @ 9"	5376	Passed (9%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1697 @ 6' 1 1/2"	3706	Passed (46%)	1.15	1.0 D + 1.0 S (All Spans)
Vert Live Load Defl. (in)	0.101 @ 6' 1 1/2"	0.408	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Vert Total Load Defl. (in)	0.182 @ 6' 1 1/2"	0.613	Passed (L/806)		1.0 D + 1.0 S (All Spans)
Lat Member Reaction (lbs)	352 @ 12' 3"	N/A	Passed (N/A)	1.60	1.0 D + 0.6 W
Lat Shear (lbs)	319 @ 7"	7480	Passed (4%)	1.60	1.0 D + 0.6 W
Lat Moment (Ft-lbs)	1079 @ mid-span	3781	Passed (29%)	1.60	1.0 D + 0.6 W
Lat Deflection (in)	0.151 @ mid-span	1.225	Passed (L/974)		1.0 D + 0.6 W
Bi-Axial Bending	0.50	1.00	Passed (50%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Lateral deflection criteria: Wind (L/120)

• A 0.6% decrease in the moment capacity has been added to account for lateral stability.

• Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	248	306	554	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	248	306	554	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

Lateral Connections									
Supports	Plate Size	Plate Material	Connector	Type/Model	Quantity	Nailing			
Left	2X	Hem Fir	Nails	10d (0.128" x 3") (End)	5				
Right	2X	Hem Fir	Nails	10d (0.128" x 3") (End)	5				

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 12' 3"	N/A	10.4		
1 - Uniform (PSF)	0 to 12' 3"	2'	15.0	25.0	Roof Load

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	4'	24.0	

ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width.
 IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com		Weyerhaeuser

2nd Floor, RH-4 1 piece(s) 4 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	913 @ 0	3281 (1.50")	Passed (28%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	700 @ 8 3/4"	3502	Passed (20%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1426 @ 3' 1 1/2"	3405	Passed (42%)	1.15	1.0 D + 1.0 S (All Spans)
Vert Live Load Defl. (in)	0.034 @ 3' 1 1/2"	0.208	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Vert Total Load Defl. (in)	0.056 @ 3' 1 1/2"	0.313	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Lat Member Reaction (lbs)	144 @ 6' 3"	N/A	Passed (N/A)	1.60	1.0 D + 0.6 W
Lat Shear (lbs)	124 @ 5"	4872	Passed (3%)	1.60	1.0 D + 0.6 W
Lat Moment (Ft-lbs)	224 @ mid-span	2425	Passed (9%)	1.60	1.0 D + 0.6 W
Lat Deflection (in)	0.027 @ mid-span	0.625	Passed (L/999+)		1.0 D + 0.6 W
Bi-Axial Bending	0.33	1.00	Passed (33%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Lateral deflection criteria: Wind (L/120)

• A 1% decrease in the moment capacity has been added to account for lateral stability.

• Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	366	547	913	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	366	547	913	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

Lateral Connections									
Supports	Plate Size	Plate Material	Connector	Type/Model	Quantity	Nailing			
Left	2X	Hem Fir	Nails	8d (0.113" x 2 1/2") (Toe)	2				
Right	2X	Hem Fir	Nails	8d (0.113" x 2 1/2") (Toe)	2				

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 6' 3"	N/A	6.4		
1 - Uniform (PSF)	0 to 6' 3"	7'	15.8	25.0	Snow Load

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	3'	25.5	

ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width.
 IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com		Weyerhaeuser

2nd Floor, RH-5 1 piece(s) 4 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1678 @ 0	3281 (1.50")	Passed (51%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1287 @ 8 3/4"	3502	Passed (37%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	2622 @ 3' 1 1/2"	3405	Passed (77%)	1.15	1.0 D + 1.0 S (All Spans)
Vert Live Load Defl. (in)	0.063 @ 3' 1 1/2"	0.208	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Vert Total Load Defl. (in)	0.104 @ 3' 1 1/2"	0.313	Passed (L/723)		1.0 D + 1.0 S (All Spans)
Lat Member Reaction (lbs)	144 @ 6' 3"	N/A	Passed (N/A)	1.60	1.0 D + 0.6 W
Lat Shear (lbs)	124 @ 5"	4872	Passed (3%)	1.60	1.0 D + 0.6 W
Lat Moment (Ft-lbs)	224 @ mid-span	2425	Passed (9%)	1.60	1.0 D + 0.6 W
Lat Deflection (in)	0.027 @ mid-span	0.625	Passed (L/999+)		1.0 D + 0.6 W
Bi-Axial Bending	0.54	1.00	Passed (54%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Lateral deflection criteria: Wind (L/120)

• A 1% decrease in the moment capacity has been added to account for lateral stability.

• Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	662	1016	1678	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	662	1016	1678	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

Lateral Connections									
Supports	Plate Size	Plate Material	Connector	Type/Model	Quantity	Nailing			
Left	2X	Hem Fir	Nails	8d (0.113" x 2 1/2") (Toe)	2				
Right	2X	Hem Fir	Nails	8d (0.113" x 2 1/2") (Toe)	2				

			Dead	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 6' 3"	N/A	6.4		
1 - Uniform (PSF)	0 to 6' 3"	13'	15.8	25.0	Roof Load

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	3'	25.5	

ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width.
 IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@120engineering.com		Weverhaeuser

2nd Floor, 2J-1 1 piece(s) 18" TJI ® 360 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	809 @ 2 1/2"	1141 (2.00")	Passed (71%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	797 @ 3 1/2"	2425	Passed (33%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	4651 @ 11' 9 1/2"	9465	Passed (49%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.316 @ 11' 9 1/2"	0.579	Passed (L/878)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.411 @ 11' 9 1/2"	1.158	Passed (L/676)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	43	40	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).Allowed moment does not reflect the adjustment for the beam stability factor.

Allowed moment does not reflect the adjustment for the beam stability
A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	3.50"	2.00"	1.75"	189	629	818	1 1/2" Rim Board
2 - Stud wall - DF	3.50"	2.00"	1.75"	189	629	818	1 1/2" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 6" o/c	
Bottom Edge (Lu)	23' 4" o/c	
		•

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 23' 7"	16"	12.0	40.0	Floor Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl	
L120 Engineering	1
(425) 636-3313	1
hklieal@120enaineerina.com	1

2nd Floor, 2B-1 1 piece(s) 3 1/2" x 18" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3533 @ 11' 5 1/2"	3533 (1.62")	Passed (100%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2580 @ 9' 11 1/2"	12180	Passed (21%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	9827 @ 5' 10 3/4"	43665	Passed (23%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.054 @ 5' 10 3/4"	0.278	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.075 @ 5' 10 3/4"	0.556	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	5.50"	4.00"	2.59"	1030	2712	3742	1 1/2" Rim Board
2 - Hanger on 18" PSL beam	5.50"	Hanger ¹	1.62"	1046	2770	3815	See note 1

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	11' 4" o/c				
Bottom Edge (Lu)	11' 4" o/c				
•Maximum allowable bracing intervals based on applied load.					

app

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 - Face Mount Hanger	THA422	1.75"	N/A	22-16d	6-16d	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 1/2" to 11' 5 1/2"	N/A	19.7		
1 - Uniform (PSF)	0 to 11' 11" (Front)	8'	12.0	40.0	Floor Load
2 - Uniform (PSF)	0 to 11' 11" (Back)	3' 6"	17.0	40.0	Master Bath Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Harrison Klieg L120 Engineering (425) 636-3313 hkliegl@I120engineering.com

4/6/2023 7:59:43 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Granbois Page 17 / 57

2nd Floor, 2B-2 1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL

Overall Length: 23' 11"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4184 @ 23' 7"	8505 (4.00")	Passed (49%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	3930 @ 21' 11 1/2"	18270	Passed (22%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	27528 @ 16'	65497	Passed (42%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.301 @ 12' 8 1/16"	0.581	Passed (L/927)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.445 @ 12' 7 9/16"	1.163	Passed (L/627)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	5.50"	5.50"	1.50"	987	1860	2848	Blocking
2 - Stud wall - HF	5.50"	4.00"	1.97"	1375	2823	4198	1 1/2" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	23' 10" o/c	
Bottom Edge (Lu)	23' 10" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 23' 9 1/2"	N/A	29.5		
1 - Uniform (PSF)	0 to 23' 11" (Front)	1'	12.0	40.0	Floor Load
2 - Uniform (PSF)	0 to 16' (Back)	1'	12.0	40.0	Floor Load
3 - Uniform (PSF)	16' to 23' 11" (Back)	1'	17.0	40.0	Master Bath
4 - Point (lb)	16' (Back)	N/A	1046	2770	Linked from: 2B-1, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl	
L120 Engineering	
(425) 636-3313	
hklieal@120enaineerina.com	

2nd Floor, 2B-3 1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL

Overall Length: 19' 10 3/4"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	8604 @ 4"	8505 (4.00")	Passed (101%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	7099 @ 17' 11 1/2"	18270	Passed (39%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	40258 @ 9' 10 3/4"	65497	Passed (61%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.340 @ 9' 10 3/4"	0.478	Passed (L/674)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.517 @ 9' 10 3/4"	0.956	Passed (L/444)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length				Loads to Su			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - HF	5.50"	4.00"	4.05"	2970	5740	1732	8710	1 1/2" Rim Board
2 - Hanger on 18" PSL beam	5.25"	Hanger ¹	2.57"	2992	5800	1750	8792	See note 1

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	19' 4" o/c						
Bottom Edge (Lu)	19' 4" o/c						
•Maximum allowable bracing intervals based on applied load							

Maximum allowable bracing intervals based on applied load

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 - Face Mount Hanger	HGUS5.50/14	4.00"	N/A	66-10d	22-10d	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	1 1/2" to 19' 5 1/2"	N/A	29.5			
1 - Uniform (PSF)	0 to 19' 10 3/4" (Back)	5' 6"	12.0	40.0	-	Floor Load
2 - Uniform (PSF)	0 to 19' 10 3/4" (Back)	6'	15.0	60.0	25.0	Deck Load
3 - Uniform (PLF)	0 to 19' 10 3/4" (Top)	N/A	100.0	-	-	Wall Load Above
4 - Uniform (PSF)	0 to 19' 10 3/4" (Top)	1'	15.0	-	25.0	Roof Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@I120engineering.com

4/6/2023 7:59:43 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Granbois Page 19 / 57

2nd Floor, 2B-4 1 piece(s) 7" x 18" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	12604 @ 4"	15593 (5.50")	Passed (81%)		1.0 D + 0.45 W + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	10363 @ 1' 11 1/2"	28014	Passed (37%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	68144 @ 10' 6"	87330	Passed (78%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.543 @ 10' 6"	0.556	Passed (L/492)		1.0 D + 0.45 W + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.895 @ 10' 6"	1.112	Passed (L/298)		1.0 D + 0.45 W + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Member should be side-loaded from both sides of the member or braced to prevent rotation.

	Bearing Length				Loads				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Wind	Factored	Accessories
1 - Stud wall - HF	5.50"	5.50"	4.45"	5496	4066	4630	1301	12604	Blocking
2 - Stud wall - HF	5.50"	5.50"	2.64"	2987	3567	1845	999	7495	Blocking
 Blocking Panels are assumed to carry no load 	s applied dire	tly above the	m and the ful	l load is appli	ed to the men	nher heina de	signed.		•

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	22' 11" o/c	
Bottom Edge (Lu)	22' 11" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	Wind	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 22' 11"	N/A	39.4				
1 - Uniform (PSF)	0 to 22' 11" (Front)	2'	12.0	40.0	-	-	Floor Load
2 - Point (Ib)	10' 6" (Front)	N/A	2992	5800	1750	-	Linked from: 2B-3, Support 2
3 - Uniform (PLF)	0 to 10' 6" (Top)	N/A	100.0	-	-	-	Wall Load Above
4 - Uniform (PSF)	0 to 10' 6" (Top)	18'	15.8	-	25.0	-	Roof Load
5 - Point (lb)	10' (Top)	N/A	-	-	-	2300	Wind governed shearwall reaction

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

Weyerhaeuser

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com	

2nd Floor, 2B-5 1 piece(s) 7" x 18" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	10672 @ 5 1/2"	10672 (2.44")	Passed (100%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	9287 @ 1' 11 1/2"	28014	Passed (33%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	61697 @ 12' 1/4"	100429	Passed (61%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.435 @ 12' 1/4"	0.578	Passed (L/638)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.845 @ 12' 1/4"	1.156	Passed (L/328)		1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Member should be side-loaded from both sides of the member or braced to prevent rotation.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Hanger on 18" PSL beam	5.50"	Hanger ¹	2.44"	5367	481	5710	11077	See note 1
2 - Stud wall - HF	5.50"	4.00"	3.83"	5324	476	5651	10975	1 1/2" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	23' 4" o/c	
Bottom Edge (Lu)	23' 4" o/c	

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie										
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories				
1 - Face Mount Hanger	HGUS7.25/14	4.00"	N/A	66-10d	22-10d					
- Defer to menufacturer notes and instructi										

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	5 1/2" to 23' 9 1/2"	N/A	39.4			
1 - Uniform (PSF)	0 to 23' 11" (Front)	1'	12.0	40.0	-	Floor Load
2 - Uniform (PSF)	0 to 23' 11" (Back)	1'	12.0	-	25.0	Low Roof Load
3 - Uniform (PLF)	0 to 23' 11" (Top)	N/A	100.0	-	-	Wall Load Above
4 - Uniform (PSF)	0 to 23' 11" (Top)	18'	15.8	-	25.0	Roof Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com	

2nd Floor, 2B-6 1 piece(s) 7" x 18" 2.2E Parallam® PSL

Support 1 failed reaction check due to insufficient bearing capacity.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	24670 @ 4"	15593 (5.50")	Failed (158%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	22799 @ 1' 11 1/2"	28014	Passed (81%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	93562 @ 4' 6"	100429	Passed (93%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.339 @ 8' 2 1/4"	0.419	Passed (L/594)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.646 @ 8' 1 3/4"	0.837	Passed (L/311)		1.0 D + 1.0 S (All Spans)

• Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

Member should be side-loaded from both sides of the member or braced to prevent rotation.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - HF	5.50"	5.50"	8.70"	11977	4631	12293	24670	Blocking
2 - Stud wall - HF	5.50"	5.50"	5.11"	6594	2796	7723	14483	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	17' 5" o/c					
Bottom Edge (Lu)	17' 5" o/c					
Maximum allowable bracing intervals based on applied load						

Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 17' 5"	N/A	39.4			
1 - Uniform (PSF)	0 to 4' 6" (Back)	11' 6"	12.0	40.0	-	Floor Load
2 - Uniform (PSF)	4' 6" to 17' 5" (Back)	11' 6"	12.0	-	25.0	Low Roof Load
3 - Uniform (PSF)	0 to 17' 5" (Front)	7'	12.0	40.0	-	Floor Load
4 - Point (lb)	4' 6" (Back)	N/A	5367	481	5710	Linked from: 2B-5, Support 1
5 - Uniform (PSF)	0 to 17' 5" (Top)	12'	15.8	-	25.0	Roof Load
6 - Point (lb)	4' 6" (Top)	N/A	5347	-	5367	Linked from: GT-2 (For Reactions Only), Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tester hardset in accord and with a party of the to statistical or stry standards. Wey in a cost in standards in the occur valuated by roo-ES and and/or tester hardset in accord and with a particular STM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@I120engineering.com	

4/6/2023 7:59:43 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Granbois Page 22 / 57

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

2nd Floor, 2B-7 1 piece(s) 3 1/2" x 18" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1329 @ 5 1/2"	3281 (1.50")	Passed (40%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	909 @ 1' 11 1/2"	12180	Passed (7%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	3155 @ 5' 2 1/2"	43665	Passed (7%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.014 @ 5' 2 1/2"	0.237	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.019 @ 5' 2 1/2"	0.475	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on 18" PSL beam	5.50"	Hanger ¹	1.50"	406	1042	1448	See note 1
2 - Hanger on 18" PSL beam	5.50"	Hanger ¹	1.50"	406	1042	1448	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	9' 6" o/c					
Bottom Edge (Lu)	9' 6" o/c					
Manimum ellevisels based as such as a such as a such as the						

Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	IUS3.56/11.88	2.00"	N/A	12-10d	2-10dx1.5	
2 - Face Mount Hanger	IUS3.56/11.88	2.00"	N/A	12-10d	2-10dx1.5	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	5 1/2" to 9' 11 1/2"	N/A	19.7		
1 - Uniform (PSF)	0 to 10' 5" (Front)	5'	12.0	40.0	Stair Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@I120engineering.com

2nd Floor, 2B-8 1 piece(s) 3 1/2" x 18" 2.2E Parallam® PSL

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5810 @ 4"	5670 (4.00")	Passed (102%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	4630 @ 1' 11 1/2"	12180	Passed (38%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	24145 @ 7' 6"	43665	Passed (55%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.221 @ 7' 11 1/4"	0.381	Passed (L/829)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.298 @ 7' 11 1/4"	0.762	Passed (L/614)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	5.50"	4.00"	4.10"	1515	4372	5888	1 1/2" Rim Board
2 - Stud wall - HF	5.50"	4.00"	4.04"	1491	4310	5801	1 1/2" Rim Board

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	15' 8" o/c	
Bottom Edge (Lu)	15' 8" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 1/2" to 15' 9 1/2"	N/A	19.7		
1 - Uniform (PSF)	0 to 15' 11" (Front)	12'	12.0	40.0	Floor Load
2 - Point (lb)	7' 6" (Front)	N/A	406	1042	Linked from: 2B-7, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com	

2nd Floor, 2B-10 1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	9823 @ 4"	11694 (5.50")	Passed (84%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	6378 @ 1' 11 1/2"	21011	Passed (30%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	26585 @ 6' 5 1/2"	75322	Passed (35%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.108 @ 6' 5 5/16"	0.306	Passed (L/999+)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.176 @ 6' 5 3/8"	0.613	Passed (L/836)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Factored	Accessories
1 - Stud wall - HF	5.50"	5.50"	4.62"	3922	3100	3875	1276/-1276	9823	Blocking
2 - Stud wall - HF	5.50"	5.50"	4.58"	3922	3100	3875	1099/-1099	9730	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	12' 11" o/c				
Bottom Edge (Lu)	12' 11" o/c				
Maximum allowable bracing intervals based on applied load					

imum allowable bracing intervals based on applied load

			Dead	Floor Live	Snow	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 12' 11"	N/A	29.5				
1 - Uniform (PSF)	0 to 12' 11" (Front)	12'	12.0	40.0	-	-	Floor Load
2 - Uniform (PSF)	0 to 12' 11" (Back)	12'	12.0	-	25.0	-	Low Roof Load
3 - Uniform (PLF)	0 to 12' 11" (Top)	N/A	100.0	-	-	-	Wall Load Above
4 - Uniform (PSF)	0 to 12' 11" (Top)	12'	15.8	-	25.0		Roof Load
5 - Point (lb)	6' (Top)	N/A	-	-	-	2375	EQ = 950lb*2.5

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Harrison Klieg L120 Engineering (425) 636-3313 hkliegl@I120engineering.com

4/6/2023 7:59:43 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Granbois Page 25 / 57

2nd Floor, 2B-11 1 piece(s) 7" x 14" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2507 @ 5 1/2"	6563 (1.50")	Passed (38%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2105 @ 1' 7 1/2"	17052	Passed (12%)	0.90	1.0 D (All Spans)
Moment (Ft-Ibs)	11980 @ 10' 6 1/4"	48891	Passed (25%)	0.90	1.0 D (All Spans)
Live Load Defl. (in)	0.014 @ 10' 6 1/4"	0.503	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.275 @ 10' 6 1/4"	1.006	Passed (L/880)		1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Member should be side-loaded from both sides of the member or braced to prevent rotation.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Hanger on 14" HF beam	5.50"	Hanger ¹	1.50"	2475	132	2607	See note 1
2 - Stud wall - HF	5.50"	4.00"	1.50"	2456	130	2586	1 1/2" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	20' 4" o/c				
Bottom Edge (Lu)	20' 4" o/c				

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie								
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
1 - Face Mount Hanger	HU412-2	2.50"	N/A	22-16d	8-16d			
	C	C 11 1						

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	5 1/2" to 20' 9 1/2"	N/A	30.6		
1 - Uniform (PSF)	0 to 20' 11" (Front)	6"	12.0	25.0	Low Roof Load
2 - Uniform (PLF)	0 to 20' 11" (Top)	N/A	200.0	-	Operable Window Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www weyerhaeuser.com/woodproducts/document-library.

Weverhaeuser

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com	

2nd Floor, 2B-12 1 piece(s) 3 1/2" x 14" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3718 @ 4"	7796 (5.50")	Passed (48%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	3062 @ 1' 7 1/2"	10894	Passed (28%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	15903 @ 9' 2 1/2"	31236	Passed (51%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.355 @ 9' 2 1/2"	0.444	Passed (L/600)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.546 @ 9' 2 1/2"	0.887	Passed (L/390)		1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - HF	5.50"	5.50"	2.62"	1301	2417	3718	Blocking
2 - Column - HF	5.50"	5.50"	1.70"	1301	2417	3718	Blocking
 Blocking Papels are assumed to carry no load 	c applied dire	the shows the	m and the ful	Lload is appli	ad to the mor	nhor hoing d	ocianod

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	18' 5" o/c	
Bottom Edge (Lu)	18' 5" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 18' 5"	N/A	15.3		
1 - Uniform (PSF)	0 to 18' 5" (Front)	10' 6"	12.0	25.0	Low Roof Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com	

2nd Floor, 2B-13 1 piece(s) 3 1/2" x 14" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4114 @ 4"	7796 (5.50")	Passed (53%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	3398 @ 1' 7 1/2"	10894	Passed (31%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	17853 @ 9' 4"	31236	Passed (57%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.411 @ 9' 4"	0.450	Passed (L/526)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.629 @ 9' 4"	0.900	Passed (L/343)		1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - HF	5.50"	5.50"	2.90"	1431	2683	4114	Blocking
2 - Column - HF	5.50"	5.50"	1.88"	1431	2683	4114	Blocking
- Placking Danals are accumed to carry no loads applied directly above them and the full load is applied to the member being designed							

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	18' 8" o/c	
Bottom Edge (Lu)	18' 8" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 18' 8"	N/A	15.3		
1 - Uniform (PSF)	0 to 18' 8" (Front)	11' 6"	12.0	25.0	Low Roof Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com	

2nd Floor, 2B-14 1 piece(s) 4 x 10 DF No.2

Overall Length: 16' 5 3/4"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	901 @ 16' 2 3/4"	3281 (1.50")	Passed (27%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	815 @ 15' 5 1/2"	4468	Passed (18%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	3632 @ 8' 2"	4955	Passed (73%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.283 @ 8' 2"	0.538	Passed (L/683)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.460 @ 8' 2"	0.806	Passed (L/420)		1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/360) and TL (L/240).

• A 4.1% decrease in the moment capacity has been added to account for lateral stability.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Column - HF	2.75"	2.75"	1.50"	351	561	913	None
2 - Hanger on 9 1/4" HF beam	3.00"	Hanger ¹	1.50"	355	571	927	See note 1
• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger							

1 See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
2 - Face Mount Hanger	LUS48	2.00"	N/A	6-10dx1.5	4-10d			

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 16' 2 3/4"	N/A	8.2		
1 - Uniform (PSF)	0 to 16' 5 3/4" (Front)	2' 9"	12.6	25.0	Low Roof Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job Notes

 Harrison Kliegl
 L120 Engineering

 (425) 636-3313
 hkliegl@l120engineering.com

Weyerhaeuser

4/6/2023 7:59:43 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Granbois Page 29 / 57

1st Floor, 1C-1 1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL

Post Height: 10'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	23	50	Passed (46%)		
Compression (lbs)	24670	100327	Passed (25%)	1.15	1.0 D + 0.75 L + 0.75 S
Base Bearing (lbs)	24670	1851609	Passed (1%)		1.0 D + 0.75 L + 0.75 S
Bending/Compression	0.24	1	Passed (24%)	1.15	1.0 D + 0.75 L + 0.75 S

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

• Applicable calculations are based on NDS.

• Initial eccentricity applied as per ESR-1387.

Supports	Туре		Material		
Base	Plate		Steel		
Max Unbraced Length		Comments			
Full Member Length		No bracing assumed			

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

	Dead	Floor Live	Snow	
Vertical Load	(0.90)	(1.00)	(1.15)	Comments
1 - Point (lb)	11977	4631	12293	Linked from: 2B-6, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com	

Weyerhaeuser

1st Floor, 1C-2 1 piece(s) 7" x 7" 1.8E Parallam® PSL

Post Height: 10'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	17	50	Passed (34%)		
Compression (lbs)	14483	100441	Passed (14%)	1.15	1.0 D + 0.75 L + 0.75 S
Base Bearing (lbs)	14483	1455300	Passed (1%)		1.0 D + 0.75 L + 0.75 S
Bending/Compression	0.14	1	Passed (14%)	1.15	1.0 D + 0.75 L + 0.75 S

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

Supports	Туре		Material			
Base	Plate		Steel			
Max Unbraced Length		Comments				
Full Member Length		No bracing assumed.				

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

	Dead	Floor Live	Snow	
Vertical Load	(0.90)	(1.00)	(1.15)	Comments
1 - Point (lb)	6594	2796	7723	Linked from: 2B-6, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com	

1st Floor, 1H-1 1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1715 @ 0	3413 (1.50")	Passed (50%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	1470 @ 10 1/2"	6400	Passed (23%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Pos Moment (Ft-Ibs)	5251 @ 6' 1 1/2"	10421	Passed (50%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.139 @ 6' 1 1/2"	0.408	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.371 @ 6' 1 1/2"	0.613	Passed (L/397)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• A 4.1% decrease in the moment capacity has been added to account for lateral stability.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 12' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length				Loads to Su			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	1072	245	613	1715	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	1072	245	613	1715	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 12' 3"	N/A	7.7			
1 - Uniform (PSF)	0 to 12' 3"	1'	12.0	40.0	-	Floor Load
2 - Uniform (PSF)	0 to 12' 3"	2'	12.6	-	25.0	Low Roof Load
3 - Uniform (PLF)	0 to 12' 3"	N/A	100.0	-	-	Wall Load Above
4 - Uniform (PSF)	0 to 12' 3"	2'	15.0	-	25.0	Roof Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Harrison Kliegl
L120 Engineering
(425) 636-3313
hkliegl@I120engineering.com

Job Notes

1st Floor, 1H-2 1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3000 @ 0	3413 (1.50")	Passed (88%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2448 @ 10 1/2"	5565	Passed (44%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	7126 @ 4' 9"	9231	Passed (77%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.230 @ 4' 9"	0.317	Passed (L/496)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.302 @ 4' 9"	0.475	Passed (L/377)		1.0 D + 1.0 L (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• A 2.3% decrease in the moment capacity has been added to account for lateral stability.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 9' 6".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	720	2280	3000	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	720	2280	3000	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 9' 6"	N/A	7.7		
1 - Uniform (PSF)	0 to 9' 6"	12'	12.0	40.0	Floor Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator		Job Notes
	Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com	

1st Floor, 1H-3 1 piece(s) 5 1/2" x 13 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5346 @ 0	5363 (1.50")	Passed (100%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	4326 @ 1' 3"	13118	Passed (33%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	21033 @ 8' 3"	32595	Passed (65%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.419 @ 8' 3"	0.550	Passed (L/473)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.532 @ 8' 3"	0.825	Passed (L/372)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• A 2.4% decrease in the moment capacity has been added to account for lateral stability.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 16' 6".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	1139	3960	1650	5346	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	1139	3960	1650	5346	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 16' 6"	N/A	18.0			
1 - Uniform (PSF)	0 to 16' 6"	8'	15.0	60.0	25.0	Deck Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com	

1st Floor, 1H-4 1 piece(s) 5 1/2" x 12" 24F-V4 DF Glulam

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5028 @ 0	5363 (1.50")	Passed (94%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	4893 @ 1' 1 1/2"	11660	Passed (42%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	21410 @ 4' 6"	26115	Passed (82%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.124 @ 4' 7 1/4"	0.308	Passed (L/896)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.188 @ 4' 7 1/4"	0.463	Passed (L/591)		1.0 D + 1.0 L (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• A 1.1% decrease in the moment capacity has been added to account for lateral stability.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 9' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length				Loads to Su			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	1710	3318	889	5028	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	1630	3162	843	4792	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 9' 3"	N/A	16.0			
1 - Uniform (PSF)	0 to 9' 3"	2'	12.0	40.0	-	Floor Load
2 - Point (lb)	4' 6"	N/A	2970	5740	1732	Linked from: 2B-3, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Jol
Harrison Kliegl	
L120 Engineering	
(425) 636-3313	
hklieal@l120enaineerina.com	

1st Floor, 1H-5 1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2726 @ 0	3413 (1.50")	Passed (80%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2628 @ 10 1/2"	5565	Passed (47%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	7676 @ 3'	9277	Passed (83%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.128 @ 3' 8 11/16"	0.258	Passed (L/728)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.177 @ 3' 8 11/16"	0.387	Passed (L/527)		1.0 D + 1.0 L (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• A 1.8% decrease in the moment capacity has been added to account for lateral stability.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 7' 9".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	754	1972	2726	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	521	1360	1881	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 7' 9"	N/A	7.7		
1 - Uniform (PSF)	0 to 7' 9"	2'	12.0	40.0	Floor Load
2 - Point (lb)	3'	N/A	1030	2712	Linked from: 2B-1, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Jo
Harrison Kliegl	
L120 Engineering	
(425) 636-3313	
hklieal@l120enaineerina.com	

1st Floor, 1H-6 1 piece(s) 4 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1284 @ 0	3281 (1.50")	Passed (39%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	844 @ 8 3/4"	3045	Passed (28%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1365 @ 2' 1 1/2"	2972	Passed (46%)	1.00	1.0 D + 1.0 L (All Spans)
Vert Live Load Defl. (in)	0.019 @ 2' 1 1/2"	0.142	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Vert Total Load Defl. (in)	0.025 @ 2' 1 1/2"	0.213	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Lat Member Reaction (lbs)	100 @ 4' 3"	N/A	Passed (N/A)	1.60	1.0 D + 0.6 W
Lat Shear (lbs)	80 @ 5"	4872	Passed (2%)	1.60	1.0 D + 0.6 W
Lat Moment (Ft-lbs)	106 @ mid-span	2425	Passed (4%)	1.60	1.0 D + 0.6 W
Lat Deflection (in)	0.006 @ mid-span	0.425	Passed (L/999+)		1.0 D + 0.6 W
Bi-Axial Bending	0.27	1.00	Passed (27%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 Lr

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Lateral deflection criteria: Wind (L/120)

• A 0.6% decrease in the moment capacity has been added to account for lateral stability.

• Applicable calculations are based on NDS.

	Bearing Length		Loads	to Supports			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	307	978	1284	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	307	978	1284	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

Lateral Connections										
Supports	Plate Size	Plate Material	Connector	Type/Model	Quantity	Nailing				
Left	2X	Hem Fir	Nails	8d (0.113" x 2 1/2") (Toe)	2					
Right	2X	Hem Fir	Nails	8d (0.113" x 2 1/2") (Toe)	2					

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 4' 3"	N/A	6.4		
1 - Uniform (PSF)	0 to 4' 3"	11' 6"	12.0	40.0	Floor Load

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	3'	26.1	

ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib.
 IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

ForteWEB Software Operator	Job Notes	
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com		Weyerhaeuser

1st Floor, 1H-7 1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2801 @ 0	3413 (1.50")	Passed (82%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2271 @ 10 1/2"	5565	Passed (41%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	6478 @ 4' 7 1/2"	9238	Passed (70%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.198 @ 4' 7 1/2"	0.308	Passed (L/561)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.261 @ 4' 7 1/2"	0.463	Passed (L/426)		1.0 D + 1.0 L (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• A 2.2% decrease in the moment capacity has been added to account for lateral stability.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 9' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	674	2128	2801	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	674	2128	2801	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 9' 3"	N/A	7.7		
1 - Uniform (PSF)	0 to 9' 3"	11' 6"	12.0	40.0	Floor Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com	

1st Floor, 1B-1 1 piece(s) W14X53 (A992) ASTM Steel

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	20569 @ 23' 5 1/2"	50018 (1.50")	Passed (41%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	20203 @ 23' 5 1/2"	102860	Passed (20%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	112759 @ 16' 8 7/8"	130148	Passed (87%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.396 @ 12' 5 5/8"	0.575	Passed (L/697)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.648 @ 12' 6 3/8"	1.150	Passed (L/426)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Bearing reinforcement may be required for support located at 0".

• Bearing reinforcement may be required for support located at 23'.

• Applicable calculations are based on ANSI/AISC 360-16.

• A lateral-torsional buckling factor (Сь) of 1.0 has been assumed.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Hanger on 13 7/8" PSL beam	5.50"	Hanger ¹	1.50" / - 2	5188	9873	2169	15061	See note 1
2 - Hanger on 13 7/8" PSL beam	5.50"	Hanger ¹	1.50" / - 2	8078	11099	5554	20569	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

• ² Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
1 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A		
2 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A		

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	5 1/2" to 23' 5 1/2"	N/A	53.0			
1 - Uniform (PSF)	0 to 23' 11"	19'	12.0	40.0	-	Floor Load
2 - Point (lb)	17'	N/A	6594	2796	7723	Linked from: 2B-6, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com	

1st Floor, 1B-2 1 piece(s) W14X53 (A992) ASTM Steel

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	18232 @ 10' 5"	29500 (4.00")	Passed (62%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	18200 @ 10' 3 1/2"	102860	Passed (18%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	25705 @ 9'	199082	Passed (13%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.013 @ 5' 11 3/8"	0.256	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.022 @ 5' 11 1/8"	0.512	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

• Applicable calculations are based on ANSI/AISC 360-16.

• A lateral-torsional buckling factor (Сь) of 1.0 has been assumed.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - HF	3.50"	3.50"	3.50"	1460	1746	768	3345	Blocking
2 - Pocket - concrete	4.00"	4.00"	4.00"	7308	9778	4786	18232	None
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.								

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 10' 7 1/2"	N/A	53.0			
1 - Uniform (PSF)	0 to 10' 7 1/2"	1'	12.0	40.0	-	Floor Load
2 - Point (lb)	9'	N/A	8078	11099	5554	Linked from: 1B-1, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com	

1st Floor, 1B-3 1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL

Overall Length: 17' 7 1/4"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6898 @ 1 3/4"	6898 (2.10")	Passed (100%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	5681 @ 1' 7 3/4"	18270	Passed (31%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	29317 @ 8' 7 3/4"	65497	Passed (45%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.135 @ 8' 7 3/4"	0.425	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.304 @ 8' 7 3/4"	0.850	Passed (L/671)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length		Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Hanger on 18" LVL Ledger	1.75"	Hanger ¹	2.10"	3900	3113	432	7012	See note 1
2 - Hanger on 18" PSL beam	5.50"	Hanger ¹	2.10"	4031	3225	448	7256	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	17' o/c				
Bottom Edge (Lu)	17' o/c				

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
1 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A		
2 - Face Mount Hanger	HGUS5.50/14	4.00"	N/A	66-10d	22-10d		

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	1 3/4" to 17' 1 3/4"	N/A	29.5			
1 - Uniform (PSF)	0 to 17' 7 1/4" (Back)	6'	12.0	40.0	-	Floor Load
2 - Uniform (PSF)	0 to 17' 7 1/4" (Front)	3'	40.0	40.0	-	Exterior Patio Load
3 - Uniform (PLF)	0 to 17' 7 1/4" (Top)	N/A	200.0	-	-	Wall Load Above
4 - Uniform (PSF)	0 to 17' 7 1/4" (Top)	2'	15.0	-	25.0	Roof Load Above

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job Notes

 Harrison Kliegl
 L120 Engineering

 (425) 636-3313
 hkliegl@l120engineering.com

4/6/2023 7:59:43 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Granbois Page 42 / 57

1st Floor, 1B-4 1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	7936 @ 1 3/4"	7936 (2.42")	Passed (100%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	7508 @ 1' 7 3/4"	18270	Passed (41%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	26749 @ 3' 9"	65497	Passed (41%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.087 @ 7' 6"	0.403	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.227 @ 7' 7 5/16"	0.806	Passed (L/854)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length				Loads to Su			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Hanger on 18" LVL Ledger	1.75"	Hanger ¹	2.42"	4813	3161	758	7974	See note 1
2 - Stud wall - PSL	3.50"	3.50"	1.50"	2592	1379	512	4010	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	16' 4" o/c					
Bottom Edge (Lu)	16' 4" o/c					
Maximum allowable bracing intervals based on applied load.						

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	1 3/4" to 16' 5 1/4"	N/A	29.5			
1 - Uniform (PSF)	0 to 16' 5 1/4" (Back)	1'	12.0	40.0	-	Floor Load
2 - Uniform (PSF)	0 to 16' 5 1/4" (Front)	1'	40.0	40.0	-	Exterior Patio Load
3 - Uniform (PLF)	0 to 16' 5 1/4" (Top)	N/A	100.0	-	-	Wall Load Above
4 - Uniform (PSF)	0 to 16' 5 1/4" (Top)	2'	12.0	-	25.0	Low Roof Load Above
5 - Point (lb)	3' 9" (Back)	N/A	4031	3225	448	Linked from: 1B-3, Support 2

ForteWEB Software Operator Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@I120engineering.com

Job Notes

4/6/2023 7:59:43 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Granbois Page 43 / 57

MEMBER REPORT

1st Floor, 1B-5 1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL

An excessive uplift of -2644 lbs at support located at 3 1/2" failed this product. An excessive uplift of -2057 lbs at support located at 10' 5" failed this product.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	8687 @ 10' 5"	8687 (2.65")	Passed (100%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	4843 @ 8' 11"	18270	Passed (27%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	29787 @ 5'	104796	Passed (28%)	1.60	1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.094 @ 5'	0.253	Passed (L/999+)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.121 @ 5'	0.506	Passed (L/999+)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	B	Bearing Length			Loads				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Factored	Accessories
1 - Stud wall - HF	5.00"	5.00"	4.44"	2567	4712	268	5978/-5978	9441/- 2644	Blocking
2 - Hanger on 18" PSL beam	5.50"	Hanger1	2.65"	2634	4858	276	5197/-5197	9213/- 2057	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	10' 5" o/c				
Bottom Edge (Lu)					
Maximum allowable bracing intervals based on applied load.					

able bracing intervals based on applied loa

Connector: Simpson Strong-Tie							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
2 - Face Mount Hanger	HGUS5.50/14	4.00"	N/A	66-10d	22-10d		

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com	

			Dead	Floor Live	Snow	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 10' 5"	N/A	29.5				
1 - Uniform (PSF)	0 to 10' 10 1/2" (Back)	8'	12.0	40.0	-	-	Floor Load
2 - Uniform (PSF)	0 to 10' 10 1/2" (Front)	2'	40.0	40.0	-	-	Exterior Patio Load
3 - Uniform (PLF)	0 to 10' 10 1/2" (Top)	N/A	100.0	-	-	-	Wall Load Above
4 - Uniform (PSF)	0 to 10' 10 1/2" (Top)	2'	15.0	-	25.0	-	Roof Load Above
5 - Uniform (PSF)	0 to 10' 10 1/2" (Top)	12'	12.0	40.0	-	-	2nd Floor Load
6 - Point (Ib)	5' (Top)	N/A	-	-	-	11175	max EQ load that can be transmitted through holdown

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Harrison Kliegl
L120 Engineering
(425) 636-3313
hkliegl@l120engineering.com

Job Notes

1st Floor, 1B-6 (East West Seismic Condition) 1 piece(s) W14X43 (A992) ASTM Steel

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern) [Group]
Member Reaction (lbs)	7061 @ 20' 5 1/4"	17780 (3.50")	Passed (40%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans) [1]
Shear (Ibs)	11720 @ 1 3/4"	83570	Passed (14%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans) [1]
Moment (Ft-lbs)	46223 @ 7' 2 3/16"	107172	Passed (43%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans) [1]
Live Load Defl. (in)	0.136 @ 9' 5 7/16"	0.507	Passed (L/999+)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans) [1]
Total Load Defl. (in)	0.276 @ 9' 9 1/16"	1.015	Passed (L/883)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans) [1]

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

ForteWEB Software Operator

hkliegl@l120engineering.com

Harrison Klieg

L120 Engineering (425) 636-3313

• Bearing reinforcement may be required for support located at 0".

0

Applicable calculations are based on ANSI/AISC 360-16.

• A lateral-torsional buckling factor (Сь) of 1.0 has been assumed.

	Bearing Length			Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Factored	Accessories
1 - Hanger on 13 11/16" LVL Ledger	1.75"	Hanger ¹	1.50" / - 2	4963	5025	1071	4210/-4210	11745	See note 1
2 - Stud wall - PSL	3.50"	3.50"	3.50"	4135	2146	1065	987/-987	7061	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

Job Notes

• ¹ See Connector grid below for additional information and/or requirements.

• ² Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

Connector: Simpson Strong-Tie Support Model Seat Length Top Fasteners Face Fasteners Member Fasteners Accessories 1 - Face Mount Hanger Connector not found N/A N/A N/A N/A

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	1 3/4" to 20' 7 1/4"	N/A	43.0				
1 - Uniform (PSF)	0 to 20' 7 1/4"	1'	12.0	40.0	-	-	Floor Load
2 - Uniform (PSF)	0 to 20' 7 1/4"	1'	40.0	40.0	-		Exterior Patio Load
3 - Uniform (PLF)	4' to 20' 7 1/4"	N/A	200.0	-	-	-	Wall Load Above
4 - Uniform (PSF)	0 to 20' 7 1/4"	2'	12.0	-	25.0	-	Low Roof Load Above
5 - Uniform (PSF)	4' to 20' 7 1/4"	1'	12.0	40.0	-	-	2nd Floor Load
6 - Uniform (PSF)	4' to 20' 7 1/4"	2'	15.0	-	25.0	-	Roof Load
7 - Point (lb)	4'	N/A	2634	4858	276	5197/-5197	Linked from: 1B-5, Support 2

MEMBER REPORT

1st Floor, 1B-6 (North South Seismic Condition) 1 piece(s) W14X43 (A992) ASTM Steel

An excessive uplift of -2856 lbs at support located at 1 3/4" failed this product. An excessive uplift of -2373 lbs at support located at 20' 5 1/4" failed this product.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	8726 @ 20' 5 1/4"	17780 (3.50")	Passed (49%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Shear (Ibs)	8573 @ 20' 3 3/4"	83570	Passed (10%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Moment (Ft-Ibs)	39197 @ 15'	107172	Passed (37%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.084 @ 12' 7"	0.507	Passed (L/999+)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.185 @ 11' 6 1/8"	1.015	Passed (L/999+)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

• Bearing reinforcement may be required for support located at 0".

• Applicable calculations are based on ANSI/AISC 360-16.

• A lateral-torsional buckling factor (Сь) of 1.0 has been assumed.

	Bearing Length			Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Factored	Accessories
1 - Hanger on 13 11/16" LVL Ledger	1.75"	Hanger ¹	1.50" / - ²	2830	1090	847	6505/-6505	7698/- 2856	See note 1
2 - Stud wall - PSL	3.50"	3.50"	3.50"	3634	1223	1013	6505/-6505	8726/- 2373	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

I See Connector grid below for additional information and/or requirements.

² Required Bearing Length / Required Bearing Length with Web Stiffeners

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

	Connector: Simpson Strong-Tie											
	Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories					
	1 - Face Mount Hanger	Connector not found	N/A	N/A	N/A							

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@I120engineering.com	

			Dead	Floor Live	Snow	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	1 3/4" to 20' 7 1/4"	N/A	43.0				
1 - Uniform (PSF)	0 to 20' 7 1/4"	1'	12.0	40.0	-	-	Floor Load
2 - Uniform (PSF)	0 to 20' 7 1/4"	1'	40.0	40.0	-	-	Exterior Patio Load
3 - Uniform (PLF)	4' to 20' 7 1/4"	N/A	200.0	-	-	-	Wall Load Above
4 - Uniform (PSF)	0 to 20' 7 1/4"	2'	12.0	-	25.0	-	Low Roof Load Above
5 - Uniform (PSF)	4' to 20' 7 1/4"	1'	12.0	40.0	-	-	2nd Floor Load
6 - Uniform (PSF)	4' to 20' 7 1/4"	2'	15.0	-	25.0	-	Roof Load
7 - Point (lb)	15'	N/A	-	-	-	12000	EQ = sw reaction * overstrength
8 - Point (lb)	4'	N/A	-	-	-	-12000	EQ = sw reaction * overstrength

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	
Harrison Kliegl	
L120 Engineering	
(425) 636-3313	
hkliegl@l120engineering.com	

Job Notes

1st Floor, 1B-7 1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern) [Group]
Member Reaction (lbs)	10481 @ 10' 1 3/4"	10481 (3.19")	Passed (100%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans) [1]
Shear (lbs)	9294 @ 8' 7 3/4"	21011	Passed (44%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans) [1]
Moment (Ft-lbs)	15826 @ 8' 4 3/16"	75322	Passed (21%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans) [1]
Live Load Defl. (in)	0.031 @ 5' 7 11/16"	0.250	Passed (L/999+)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans) [1]
Total Load Defl. (in)	0.065 @ 5' 6 1/2"	0.500	Passed (L/999+)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans) [1]

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Factored	Accessories
1 - Hanger on 18" LVL Ledger	1.75"	Hanger ¹	1.50"	2368	922	1152	181/-181	4018	See note 1
2 - Hanger on 18" LVL Ledger	1.75"	Hanger ¹	3.19"	4999	3001	3752	918/-918	10546	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Later ar bracing	Brasing montais	Comments
Top Edge (Lu)	10' o/c	
Bottom Edge (Lu)	10' o/c	

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie										
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories				
1 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A					
2 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A					

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	1 3/4" to 10' 1 3/4"	N/A	29.5				
1 - Uniform (PSF)	0 to 10' 3 1/2" (Back)	1'	12.0	40.0	-	-	Floor Load
2 - Uniform (PSF)	0 to 10' 3 1/2" (Front)	1'	40.0	40.0	-	-	Exterior Patio Load
3 - Uniform (PLF)	0 to 10' 3 1/2" (Top)	N/A	200.0	-	-	-	Wall Load Above
4 - Uniform (PSF)	0 to 10' 3 1/2" (Top)	2'	12.0	-	25.0	-	Low Roof Load Above
5 - Point (lb)	8' 6" (Top)	N/A	3922	3100	3875	1099/-1099	Linked from: 2B-10, Support 2
6 - Uniform (PSF)	0 to 10' 3 1/2" (Front)	2'	15.0	-	25.0	-	Roof Load

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com	

4/6/2023 7:59:43 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Granbois Page 51 / 57

Basement, BH-1 1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4287 @ 5 1/2"	5363 (1.50")	Passed (80%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	3644 @ 1' 2 1/2"	8745	Passed (42%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	10718 @ 5' 5 1/2"	14850	Passed (72%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.172 @ 5' 5 1/2"	0.250	Passed (L/697)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.321 @ 5' 5 1/2"	0.500	Passed (L/374)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 10° .

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Hanger on concrete	5.50"	Hanger ¹	1.50"	2164	2511	409	4675	See note 1
2 - Hanger on concrete	5.50"	Hanger ¹	1.50"	2164	2511	409	4675	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	10' o/c						
Bottom Edge (Lu)	10' o/c						
Maximum allowable burging intervals based on anylind land							

Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A	
2 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

				FI 1.1	0	
			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	5 1/2" to 10' 5 1/2"	N/A	12.0			
1 - Uniform (PSF)	0 to 10' 11" (Top)	11' 6"	12.0	40.0	-	2nd Floor Load
2 - Uniform (PLF)	0 to 10' 11" (Top)	N/A	200.0	-	-	Wall Load Above
3 - Uniform (PSF)	0 to 10' 11" (Top)	3'	15.8	-	25.0	Roof Load

ForteWEB Software Operator Job Notes Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@I120engineering.com

4/6/2023 7:59:43 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Granbois Page 53 / 57

Basement, BH-2

1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6601 @ 5 1/2"	6601 (1.85")	Passed (100%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	6175 @ 1' 4"	10203	Passed (61%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	15997 @ 4' 4 5/16"	20213	Passed (79%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.172 @ 5' 3 3/16"	0.250	Passed (L/698)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.300 @ 5' 3 7/16"	0.500	Passed (L/400)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 10° .

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

· Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Hanger on concrete	5.50"	Hanger ¹	1.85"	3031	3786	409	6817	See note 1
2 - Hanger on concrete	5.50"	Hanger ¹	1.50"	2503	3128	409	5631	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments		
Top Edge (Lu)	10' o/c			
Bottom Edge (Lu)	10' o/c			
Navinum alleurable huseing intervale based en annlied land				

Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A	
2 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	5 1/2" to 10' 5 1/2"	N/A	14.0			
1 - Uniform (PSF)	3' to 10' 11" (Top)	11' 6"	12.0	40.0	-	2nd Floor Load
2 - Uniform (PLF)	0 to 10' 11" (Top)	N/A	200.0	-		Wall Load Above
3 - Uniform (PSF)	0 to 10' 11" (Top)	3'	15.8	-	25.0	Roof Load
4 - Point (Ib)	3' (Top)	N/A	1375	2823	-	Linked from: 2B-2, Support 2
5 - Uniform (PSF)	0 to 3' (Top)	3' 9"	20.0	40.0	-	Master Bath Load

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@l120engineering.com	

4/6/2023 7:59:43 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Granbois Page 55 / 57

Basement, BB-1 1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

Overall Length: 10' 11"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3309 @ 4"	3898 (5.50")	Passed (85%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2223 @ 1' 9 1/2"	5320	Passed (42%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	7961 @ 5' 5 1/2"	15557	Passed (51%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.120 @ 5' 5 1/2"	0.256	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.159 @ 5' 5 1/2"	0.512	Passed (L/775)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	5.50"	5.50"	4.67"	798	2511	3309	Blocking
2 - Stud wall - HF	5.50"	5.50"	4.67"	798	2511	3309	Blocking
Blocking Papels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.							

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 9" o/c	
Bottom Edge (Lu)	10' 11" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 10' 11"	N/A	8.2		
1 - Uniform (PSF)	0 to 10' 11" (Front)	11' 6"	12.0	40.0	Floor Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Harrison Kliegl L120 Engineering (425) 636-3313 hkliegl@1120engineering.com	

LATERAL CALCULATIONS

SHEAR-WALL REFERENCE PER PLAN

Project Number:	Plan Name:	Sheet Number:
S230110-1	Granbois	DC
Engineer:	Specifics:	Date:
НК	Design Criteria	4/6/2023

Gravity Criteria:

ROOF SYSTEM							
Live Load:							
Snow	25.0	psf					
Dead Load:							
Composite Roofing	2.0	psf					
19/32" Plywood Sheathing	2.5	psf					
Trusses at 24" o.c.	3.0	psf					
Insulation	1.8	psf					
(2) Layers 5/8" GWB	4.4	psf					
Misc/Mech	1.3	psf					
Total	15.0	psf					

EXTERIOR WALL S	SYSTE	М	
2x6 at 16" o.c.	1.7	psf	
Insulation	1.0	psf	
1/2" Plywood Sheathing	1.5	psf	
(2) layers 5/8" GWB	4.4	psf	
Misc	3.4	psf	
Total	12.0	psf	

FLOOR SYSTEM								
Live Load:								
Residential	40.0	psf						
Dead Load:								
Flooring	3.0	psf						
3/4" T & G Plywood	2.5	psf						
Floor Joists at 16" o.c.	2.5	psf						
Insulation	0.5	psf						
(1) Layers 5/8" GWB	2.2	psf						
Miscellaneous	1.3	psf						
Total	12.0	psf						

Code: IBC 2018

INTERIOR WALL SYSTEM	

Total	8.0	psf
Misc	2.0	psf
(2) Layers 5/8" GWB	4.4	psf
Insulation	0.5	psf
2x4 at 16" o.c.	1.1	psf

SEISMIC PARAMETERS:

Code Reference: ASCE 7-16

R = **6.5** Bearing Wall System, Wood Structural Panel Walls

Mapped Spectral Acceleration, Ss = 1.64 Mapped Spectral Acceleration, S1 = 0.62 Soil Site Class = D

WIND PARAMETERS:

Code Reference: ASCE 7-16 3asic Wind Speed (3 second Gust) = 100 mph Exposure : **B** Kzt = 1.90

SOIL PARAMETERS:

Soil Bearing Pressure = 3,500 psf competent native soil or structural fill 1/3 increase for short-term wind or seismic loading is acceptable Frost Depth = 18 in

pcf

Lateral Wall Pressures:

Unrestrained Active Pressure = 35 Restrained Active Pressure = 50

pcf Cantilevered walls

pcf Plate Wall Design/Tank Walls

Passive Pressure = **300** Soil Friction Coeff. = **0.5**

Project Number: F		Plan:	Sheet Number:			
S23	0110-1		L1			
Engineer:	S	Specifics:			Date	
1	нк		4/6/2023			
IBC 2018 Section 1609 $\rightarrow A$	ASCE 7-16 Section 28.5 - Simplifie	d Procedure \rightarrow Main W	ind-Force Resisting System			
LOAD CRITERIA:				WIND I	LOAD SUMMARY:	
	Basic Wind Speed, $V_s =$	100 mph	(ASCE 7-16, Section 26.5)	Front	/ Back Direction	

Exposure =	В	(ASCE 7-16, Section 26.7)
BUILDING GEOMETRY:		
Roof Slope =	7.00 :12	= 30.26 degrees
Loads From Front/Back - Width (ft)=	64.00 ft	Roof: Hip
Loads From Side - Width (ft) =	64.00 ft	Roof: Hip
Average Eave Height =	21.00 ft	
Mean Roof Ht., h =	29.00 ft	(ASCE 7-16, Figure 27.5-2)
Edge Strip Width, a =	6.4 ft	(ASCE 7-16, Figure 28.5-1)
End Zone Width, 2a =	12.80 ft	(ASCE 7-16, Figure 28.5-1)
DESIGN:		
Topographic Factor, Kzt =	1.90	(ASCE 7-16, Section 26.8)
Adjustment Factor, $\lambda =$	1.00	(ASCE 7-16, Figure 28.5-1)

SIMPLIFIED DESIGN WIND PRESSURE, P _{S30} (psf)												
(Exposure B at $h = 30 ft.$)												
Basic Wind	Roof			ZONES*								
Speed, Vs	Angle	Load Case		Horizontal Pressure				Vertica	al Presssure		Overh	ang
(mph)	(Degrees)		Α	В	С	D	Е	F	G	Н	E _{OH}	GOH
100	30.26	А	17.80	12.20	14.20	9.80	1.40	-10.80	0.50	-9.30	-6.30	-7.20

* Values Interpolated from Figure 28.5-1 ASCE 7 - 16

Project Number:	Plan:	Sheet Number:
S230110-1	Granbois	L1
Engineer:	Specifics:	Date
НК	WIND FORCES	4/6/2023

IBC 2018 Section 1609 → ASCE 7-16 Section 28.5 - Simplified Procedure → Main Wind-Force Resisting System

HO	RIZONTAL	MIN. LO.	ADS (psf)		
	$p_{s=}\lambda^*K$	Per ASCE 7	7-16, 28.6.3		
End	zone	Inte	rior zone	Deef	337-11
A (Wall)	B (Roof)	C (Wall)	D (Roof)	KOOI	wan
33.82	23.18	26.98	18.62	8.0	16.0

Full Impact at Basement? NO (No = 1/4 Impact)

	ASD WIND FORCES: FRONT / BACK LOADING DIRECTION									
		Width	Hoight		End	l Zone	Interior zone		Force	Min Force
	Location	w Idui	Tieigin	Plane	Length	Pressure (W)	Length	Pressure (W)	0.6 ω*W	0.6 ω*W
		(ft)	(ft)		(ft)	(psf)	(ft)	(psf)	(kips)	(kips)
۲.	'Height" of Roof to Plate (see note)	64.0	8.00	(roof)	12.8	23.18	51.2	18.62	7.80	3.19
100	Plate to Mid 2nd LVL	64.0	4.50	(wall)	12.8	33.82	51.2	26.98	6.37	3.59
Ξ.								$\Sigma =$	14.17	6.79
JR	Mid 2nd LVL to Floor	64.0	4.50	(wall)	12.8	33.82	51.2	26.98	6.37	3.59
TOC	sight" Low-Roof to Plate (see note)	0.0	0.00	(roof)	12.8	23.18	-12.8	18.62	0.00	0.00
d F	Floor to Mid 1st LVL	64.0	5.00	(wall)	12.8	33.82	51.2	26.98	7.08	3.99
2n								$\Sigma =$	13.44	7.59
¥	Mid 1st LVL to Floor	64.0	5.00	(wall)	12.8	33.82	51.2	26.98	7.08	3.99
8	eight" Low-Roof to Plate (see note)	0.0	0.00	(roof)	12.8	23.18	-12.8	18.62	0.00	0.00
E	Floor to Mid Basement LVL	0.0	5.00	(wall)	12.8	33.82	-12.8	26.98	0.34	0.00
1st								$\Sigma =$	1.85	1.00
Total Wind Base Shear (kips)									29.47	15.38

Full Impact at Basement? NO (No = 1/4 Impact)

	ASD WIND FORCES: SIDE / SIDE LOADING DIRECTION										
		Width	Height		Enc	l Zone	Inte	rior zone	Force	Min Force	
	Location	w luui	Height	Plane	Length	Pressure (W)	Length	Pressure (W)	0.6 ω*W	0.6 ω*W	
		(ft)	(ft)		(ft)	(psf)	(ft)	(psf)	kips	kips	
	'Height" of Roof to Plate (see note)	64.0	8.00	(roof)	12.8	23.18	51.2	18.62	7.80	3.19	
	Plate to Mid 2nd LVL	64.0	4.50	(wall)	12.8	33.82	51.2	26.98	6.37	3.59	
	~							$\Sigma =$	14.17	6.79	
	Mid 2nd LVL to Floor	64.0	4.50	(wall)	12.8	33.82	51.2	26.98	6.37	3.59	
	eight" Low-Roof to Plate (see note)	0.0	0.00	(roof)	12.8	23.18	-12.8	18.62	0.00	0.00	
	Floor to Mid 1st LVL	67.0	5.00	(wall)	12.8	33.82	54.2	26.98	7.39	4.18	
	, A							$\Sigma =$	13.76	7.78	
	Mid 1st LVL to Floor	67.0	5.00	(wall)	12.8	33.82	54.2	26.98	7.39	4.18	
00	eight" Low-Roof to Plate (see note)	0.0	0.00	(roof)	12.8	23.18	-12.8	18.62	0.00	0.00	
	Floor to Mid Basement LVL	0.0	5.00	(wall)	12.8	33.82	-12.8	26.98	0.34	0.00	
	ISI							$\Sigma =$	1.93	1.05	
						m . 11		a 1 a 1 b	20.04	1.7.61	

Total Wind Base Shear (kips) 29.86 15.61

Project Number:	Plan Name:	Sheet Number:
S230110-1	Granbois	L2
Engineer:	Specifics:	Date:
НК	SEISMIC WEIGHTS	4/6/2023

Unit Weights (psf)			Seismic Weights include: (REF §12.7)
Roof:	15	psf	25% of storage Live loads
Floor:	12	psf	Actual partition weight or 10 psf min if applicable
Exterior Wall:	12	psf	Operating weight of permenant equipment
Interior Wall:	8	psf	20% of uniform design snow loads for areas where $Pf > 30 \text{ psf}$

		AREA /	HEIGH	WEIGH		Total	Sub-	Average
		LENGT	Т	Т		Weight.	Total	Pressure
LEVEL	ITEM	Н	(ft)	(psf)		(lbs)	(kips)	(psf)
ROOF:								
	Roof	3,100	1.12	15	=	52,195		
	Ext. Wall Below	300	4.00	12	=	14,400		
(Corridor Wall Below	150	4.00	8	=	4,800		
							71	23
2nd FLO	OR:							
	Floor	2,650	1.00	12	=	31,800		
	Low Roof	0	1.12	15	=	0		
	Ext. Wall Above	300	4.00	12	=	14,400		
C	Corridor Wall Above	150	4.00	8	=	4,800		
	Ext. Wall Below	200	4.50	12	=	10,800		
C	Corridor Wall Below	110	4.50	8	=	3,960		
							66	25
1st FLOC	DR:							
	Floor	3,900	1.00	12	=	46,800		
	Low Roof	0	1.12	15	=	0		
	Ext. Wall Above	200	4.50	12	=	10,800		
C	Corridor Wall Above	110	4.50	8	=	3,960		
	Ext. Wall Below	200	4.50	12	=	10,800		
C	Corridor Wall Below	100	4.50	8	=	3,600		
							76	19
BASEME	ENT:							
	Ext. Wall Above	200	4.50	12	=	10,800		
C	Corridor Wall Above	100	4.50	8	=	3,600		
							14	

STRUCTURE WEIGHT FOR SEISMIC BASE SHEAR: 213 kips

TOTAL WEIGHT OF STRUCTURE: 228 kips (Includes Basement Dead Load)

Project Ni	umber:		Plan Name:					Sheet Number:
	S23011	0-1		Gr	anbois	5		L3
Engineer:	нк		Specifics:	SEISM	IC FOF	RCES		Date: 4/6/202
Equivela	int Lateral Fo	orce Analysis p	er IBC 2018 1	$1613.1 \rightarrow AS$	SCE 7-16	Table 12.6	5-1 →Sec 12	2.8
1		5 1						
Data g	enerated by:	Seismic Desig	n Values for	<u>Buildings</u>	''Java Gi	round Mot	ion Paramo	eter Calculation'
				$S_1 =$	0.62		Maps	
				$S_{DS} =$	1.2		(ASCE 7 EQ	11.43)
				S _{D1} =	0.85		(ASCE 7 EO	11.44)
		Seis	mic Importan	ce Factor =	1.00		(ASCE 7 Tat	ble 11.5-1)
		Se	ismic Design	Category =	D		(ASCE 7 Tat	ble 11.6-1 & 11.6.2)
		Response	Modification	Factor, R =	6.5		(ASCE 7 Tat	ble 12.2-1)
	Seismic	e Force-Resistin	ng System De	scription =	A.13 - lig	ht framed v	walls	
			Building I	Height, h _n =	30.0	ft		
		Building	Period Coeff	icient, $C_T =$	0.020		(ASCE 7 Tat	ble 12.82)
		Approx. F	Fundamental I	Period, $T_a =$	0.256	$(C_{T^{*}}(h_{n}^{0.75})$	(ASCE 7 EO	12.87)
		Approx. F	Fundamental F	Period, $T_{T} =$	6.0	sec	(ASCE 7 11	4 6)
		11		, L	0.0	see	(ABCL / III.)
Soismia	Dosponso C	adfiniant						
Seisinic	Kesponse C	$C_s = S_{DS}/(R/I)$		$C_{e} =$	0 185		(ASCE 7 EO	128 2)
		3 25 7		3	0.165		(ASCE / EQ	12.02)
Seismic	Response C	oefficient, Ma	ximum					
		$C_{s, MAX} = S_{D1}/$	(T*R/I)	$C_{s,MAX} =$	0.510	$T \leq T_{\rm L}$	(ASCE 7 EQ	12.83)
		$C_{s, MAX} = S_{D1}$	$\Gamma_L/(T^2 * R/I)$	$C_{s, MAX} =$	NA	$T>T_{\rm L}$	(ASCE 7 EQ	12.84)
Seismic	Response C	oefficient, Mir	nimum					
		$C_{s,\rm MIN}{=}0.01$		$C_{s, MIN} =$	0.010		(ASCE 7 EQ	12.85)
		$C_{s, MIN} = 0.5 S$	1 / (R/I)	$C_{s, MIN} =$	0.048	if S1 > 0.6	(ASCE 7 EQ	12.86)
				C _a =	0 185			
			Dead	d Load W =	213	kips		
			v	V = Cs W =	39.3	kips	(ASCE 7 EQ	12.81)
				$Q_E = V =$	39.3	kips	(ASCE 7 EQ	12.4-3)
				ρ=	1.0		(ASCE 7 12.	3.4.2)
			_	$E_{\rm H} = \rho Q_{\rm E}$	39.3	kips	(ASCE 7 EQ	12.4-3)
			Ev =	$= .2 \text{ S}_{\text{DS}} \text{ D} =$	0.24	x D kips	8	
		Factor for Alte	ernate Basic L	Load conbina $E_{rr}/1.4 =$	tions - 20 28 1	18 IBC	IBC 2019 12	0532
				т.н/ т. ч – k –	20.1 1	wha	ASCE 7 12	03.3.2 8 3)
				<u>к</u> –	1		(1)001 / 12.	
		VERTICA	AL DISTRIB	UTION (Pe	r ASCE	7 - 12.8.3)		
		Story	Total	Story		Vert Dist	Story	Factored Story
Floor	Area	Height	Height	Weight	wh ^k	Factor	Force	Force (ASD) Ex $o/1.4 = E_{-}/1.4$
	(\mathbf{ft}^2)	H		w _x		Cvx		$1 \times p/1.4 = E_{\rm H}/1.4$
Roof	(11)	(tt)	(tt)	(kips)	(k-ft)	0.51	(kips)	(kips)
2nd	2.650	10.00	20.00	66	2,142 1.315	0.31	12.3	8.8
1st	3,900	10.00	10.00	76	760	0.18	7.1	5.1

4,217

1.000

39.3

Sum =

28.1

Project Number:	Plan Name:	Sheet Number:
S230110-1	Granbois	L4
Engineer:	Specifics:	Date:
НК	DESIGN LOADS	4/6/2023

		S	IDE / SII	DE DIRECTION
Wind	Force	Seismi	c Force	
0.6 ω * V Per Level	Sum	E/1.4 Per Level	(<i>kips</i>)	Governing Force:
14.17		14.27		ROOF 14.27 k Seismic
13.76	14.17	8.77	14.27	2nd FLOOR 13.76 k Wind
1.93	27.93	5.06	23.04	1st FLOOR 5.06 k Seismic
	29.86		28.10	BASEMENT Base Shear:
				29.86 k Wind

											Notes:						-											
Project N	lumber:		Plan Name:					Sheet Number:			* All walls de ratio of 2:1	signed with Fo at Pier (SDPW	rce-Transfer shou S 2018, Table 4.3	ld meet a minimum heig 3.4)	tt to width													
S2	30110)-1			Grant	oois]	L5		* Maximum a	llowed height	to width ratio 3.5:	1 for walls w/o opening	s (increased shear						$\mathbf{RED} = \mathbf{I}$	Jpdate Formula	as required	- Important				
Engineer	:		Specifics:					Date:			design value	es per SDPWS	2018, Table 4.3.4	4)							BLUE =	Review and up	odate as requ	ired - Typical Inj	put			1 1
	НК			She	ar walls (f	front/back)		4/6	/2023		* Shear panel	height is heigl	t to underside or i	roof or floor framing.														
2nd Sto	ry Wall	s (Front	- Back Dir	ection)					Stud Species	HF]				2nd Stor	y Walls (Fron	t - Back Dir	rection)				
			Story	shear(kins) =	14.27		G	overning Force	F/B Direction) =	Wind						1					Hold do	wns and windo	owstraps					
			Sto	ry height (ft) =	10.00		D	ead load factor	F/B Direction) =	0.67	IBC 2018 Eq	uation 16-18																
			Shear Pan	el height (ft) =	9.00	100% story shear	Shear pa	anel capacity (W	ind or Seismic) =	Seismic																		
		Tot	tal Diaphragn	n Width (ft) =	64.00	YES		loa	d balance check =	ill loads do not mat	ch story shear																	
														Height/Width													Force at	Window
Story	Wall	Wall	Opening	Opening	Opening (max)	Plate to	Effective	Trib. Width	Percent	Effective	Story	Sum	Panel	Reduction (%)	Design Panel	Wall	Roof DL	Sum	Sum	OTM	RM	Resultant	HD	HD/Strap to	HD location	Resultant	Window	Strap
	Mark	L(ft)	Width (ft)	Height (ft)	to Edge (ft)	Opening (ft)	Length (ft)	(ft)	Sharing (%)	Trib. Width	V(kips)	V(kips)	Shear (plf)	$R = 2^{\circ}L/H$	Shear (plf)	Type	Trib(ft)	DL(klf)	DL(klf)	(k-ft)	(k-ft)	HD(kips)	TYPE	DF or HF?	Edge/Interior?	HD	(Kips)	
2	1.0	23.00	3.00	5.00	4.00	0.67	20.00	9.50	1.00	9.50	2.12	2.12	106	1.00	106	SW6	15.00	0.33	0.33	21.2	59.0	-1.68	flr-flr	HF	Edge	No HD	2.01	CS14
2	2.0	12.75					12.75	16.50	1.00	16.50	3.68	3.08	289	1.00	289	5W4	15.00	0.33	0.33	30.8	18.1	1.52	nr-beam	HP	Edge	MSTC48B3	0.00	No strap
2	5.0	15.50	2.00	5.00	4.00	0.67	15.50	21.50	1.00	21.50	4.80	4.80	309	1.00	309	SW4	10.00	0.26	0.26	48.0	20.8	1.81	nr-nr	HP	Edge	MS137	2.75	No strap
4	5.0	21.00	5.00	5.00	4.00	0.07	18.00	10.00	1.00	16.00	3.37	3.57	198	1.00	198	3110	5.00	0.15	0.15	55.7	22.0	0.04	111-111	nr	Edge	313137	5.75	CMSICIO
	S =	72.25			7	Fotal OSB wall length =	48.25		S =	63.50	14.16	14.16	Warning-Wall	Total OSB Capacity	14.27	1												
1st Stor	v Walls	(Front -	- Back Dire	ection)		(idet)	1 Shear na	anel canacity (W	ind or Seismic) -	Wind				(kips)							1st Stor	v Walls (Front	- Back Dire	ection)				

151 51	ory wai	IS (FI	ront - r	back Dire	cuon)			Snear pa	inel capacity (wi	nd or Seismic) =	wind												1st Story	walls (Front	- Back Dire	ction)				
			Tota	Story : Stor Shear Pano I Diaphragn	shear(kips) = ry height (ft) = el height (ft) = m width (ft) =	13.44 10.08 9.08 64.00					Accumu load ba	lated Shear = alance check =	27.72 OK										Hold dov	wns and windo	ow straps					
															Height/Width														Force at	Window
Story	Wall Mark	۷ ۱	Wall L(ft)	Opening Width (ft)	Opening Height (ft)	Opening (max) to Edge (ft)	Plate to Opening (ft)	Effective Length (ft)	Trib. Width (ft)	Percent Sharing (%)	Effective Trib. Width	Story V(kips)	Sum V(kips)	Panel Shear (plf)	Reduction (%) $R = 2^{\circ}L/H$	Design Panel Shear (plf)	Wall Type	Floor DL Trib(ft)	DL(klf)	Walls/DL Stacks?	Sum DL(klf)	OTM (k-ft)	RM (k-ft)	Resultant HD(kips)	HD TYPE	HD/Strap to DF or HF?	HD location Edge/Interior?	Resultant HD	Window (Kips)	Strap
1	1.1	15	5.50	5.50	5.00	3.00	0.67	10.00	15.00	0.63	9.38	1.97	4.44	444	1.00	444	SW3	2.00	0.14	YES	0.47	44.8	11.1	2.25	flr-conc	HF	Edge	HDU5	6.31	CMST14
1	1.2	6	6.00					6.00	15.00	0.38	5.63	1.18	3.46	577	1.00	577	SW2	4.00	0.17	NO	0.17	34.9	2.0	5.97	flr-conc	HF	Edge	HDU8	0.00	No strap
1	3.0	23	3.50					23.50	23.00	1.00	23.00	4.83	11.47	488	1.00	488	SW2	2.00	0.14	YES	0.47	115.6	25.5	3.92	flr-conc	HF	Edge	HDU5	0.00	No strap
1	4.0	12	2.00					12.00	13.00	1.00	13.00	2.73	2.73	228	1.00	228	SW6	3.00	0.15	NO	0.15	27.5	7.4	1.75	fir-beam	HF	Edge	MSTC48B3	0.00	No strap
1	5.0	- 11	1.25					11.25	11.00	1.00	11.00	2.31	5.88	523	1.00	523	SW2	4.00	0.17	YES	0.32	59.3	7.1	4.85	flr-beam	HF	Edge	HDU8	0.00	No strap
1	6.0	8	8.00					8.00	5.00	1.00	5.00	1.05	4.62	577	1.00	577	SW2	2.00	0.14	NO	0.14	46.6	3.0	5.81	flr-conc	HF	Edge	HDU8	0.00	No strap
	S	= 70	6.25			Т	otal OSB wall length = (feet)	51.50		S =	67.00	13.02	32.60	OK	Total OSB Capacity (kips)	13.44	[
Baser	nent Wa	alls (F	Front -	Back Dir	ection)																		Basemen Hold dov	nt Walls (Fron wns and windo	t - Back Dir wstraps	ection)				
				Story	shear(kips) =	5.06					Accumu	lated Shear =	5.06	The rest of th	e story shear from abov	e has been transfe	rred into	foundation												
				Shoor Pop	ry height (ft) =	10.08					load ba	alance check =	Warning-Wa	all loads do not m	atch story shear															
			Tota	I Diaphragn	n width (ft) =	64.00																								
															Height/Width														Force at	Window
Story	Wall	N N	Wall	Opening	Opening	Opening (max)	Plate to	Effective	Trib. Width	Percent	Effective	Story	Sum	Panel	Reduction (%)	Design Panel	Wall	Story	Sum			OTM	RM	Resultant	HD			Resultant	Window	Strap
	Mark N/A	. 1	L(II)	width (ft)	Height (ft)	to Edge (ft)	Opening (ft)	Length (ft)	(ft)	Snaring (%)	I rib. Width	v(kips)	v(kips)	Snear (plf)	$\kappa = 2^{\circ}L/H$	Snear (plf)	1 ype	DL(klt)	DL(klt)			(ĸ-ft)	(ĸ-ft)	HD(kips)	1 YPE			нD	(Kips)	
в	N/A																													

CONCRETE FOUNDATION

CONCRETE FOUNDATION

CONCRETE FOUNDATION

в

_____ S = 0.00 S = 0.00 0.00 0.00 Warning-Wall loads do not match story shear

CONCRETE FOUNDATION

	M		DI N					(1)		r	* All walls	designed with	Force-Transfe	r should meet a mini	mum height to width		-											
filoject	S230110)-1	r ian wante		Granb	ois			L6		* Maximur	n allowed hei	ght to width rat	o 3.5:1 for walls w/	o openings (increased s	hear					RED = Up	date Formula as	required - In	nportant				
Enginee	21:		Specifics:	Ch a	an analla (aida (aida)		Date:	/2022		design va	lues per SDP	WS 2018, Tabl	e 4.3.4)							BLUE = R	eview and updat	te as require	d - Typical Inpu	at			
2nd St	orv Walls	(Side / S	Side Directi	on)	ar wans (s	side/sidej		4/0	Stud Species	HF	* Shear par	nel height is h	eight to undersi	de or roof or floor fr	iming.						2nd Story Hold down	Walls (Side / Si is and windows	de Directio straps	<u>n)</u>				
		(St		14.27		6-		E/B Dimention) -						r		т											
		т	Stor St Shear Pa otal Diaphra	ory height (ft) = nel height (ft) = gm width (ft) =	9.08 8.08 64.00	100% story shear YES	De Shear par	ad load factor (el capacity (Wi loa	F/B Direction) = F/B Direction) = nd or Seismic) = d balance check =	0.67 Seismic Warning-Wall los	IBC 2018 I	Equation 16-1	8			-	1											
Story	Wall	Wall	Opening	Opening	Opening (max)	Plate to	Effective	Trib. Width	Percent	Effective	Story	Sum	Panel	Height/Width Reduction (%)	Design Panel	Wall	Roof DL	Story	Su	m OTM	RM	Resultant	HD	HD/Strap to	HD location	Resultant	Force at Window	Window Strap
2	Mark Al	L(ft) 33.00	Width (ft) 17.00	Height (ft) 5.00	to Edge (ft) 3.00	Opening (ft) 0.67	Length (ft) 16.00	(tt) 15.00	Sharing (%) 1.00	15.00	V(kips) 3.35	3.35	Shear (plf) 209	$R = 2^{+}L/H$ 1.00	Shear (plf) 209	Type SW6	4.00	0.16	DL(i 0.1)	6 30.4	(k-tt) 57.3	-0.83	flr-flr	DF or HF? HF	Edge/Interior? Edge	HD No HD	(Kips) 2.97	CMSTC16
2 2	B1 C1	21.00 13.00	6.00 7.00	5.00 5.00	4.00 3.00	0.67 0.67	15.00 6.00	20.00 25.00	1.00 0.50	20.00 12.50	4.46 2.79	4.46 2.79	297 465	1.00	297 465	SW4 SW2	9.00 2.00	0.23	0.2	3 40.5 3 25.3	34.3 7.2	0.30 1.45	flr-beam flr-flr	HF	Edge Edge	No HD MST37	5.63 6.60	CMST14 CMST12
2	C2	13.00	7.00	5.00	3.00	0.67	6.00	25.00	0.50	12.50	2.79	2.79	465	1.00	465	SW2	2.00	0.13	0.1	3 25.3	7.2	1.45	flr-beam	HF	Edge	MSTC48B3	6.60	CMST12
	S =	80.00			1	Total OSB wall length =	43.00]	S =	60.00	13.38	13.38	Warning-Wa	Total OSB Capacit	14.27													
						(icer)	4							(kips)	Į													
1st Sto	ry Walls (Side / Si	ide Directio	n)			Shear par	el capacity (Wi	nd or Seismic) =	Wind											1st Story V Hold down	Walls (Side / Sid 15 and window s	le Direction straps	<u>0</u>				
		т	Stor St Shear Pa	y shear(kips) = ory height (ft) = nel height (ft) =	13.76 10.08 9.08					Accumul load ba	lated Shear = lance check =	28.03 Warning-W	all loads do not	match story shear														
		1	otai Diapiira	gin widen (11) =	00.00									Height/Width													Force at	Window
Story	Wall Mark	Wall L(ft)	Opening Width (ft)	Opening Height (ft)	Opening (max) to Edge (ft)	Plate to Opening (ft)	Effective Length (ft)	Trib. Width (ft)	Percent Sharing (%)	Effective Trib. Width	Story V(kips)	Sum V(kips)	Panel Shear (plf)	Reduction (%) R = 2*L/H	Design Panel Shear (plf)	Wall Type	Floor DL Trib(ft)	Story DL(klf)	Walls/DL Sur Stacks? DL(4	m OTM klf) (k-ft)	RM (k-ft)	Resultant HD(kips)	HD TYPE	HD/Strap to DF or HF?	HD location Edge/Interior?	Resultant HD	(Kips)	Strap
1	A1 R1	37.00	16.00	5.00	3.50	1.08	21.00	12.50	1.00	12.50	2.87	6.21	296	1.00	296 366	SW4 SW3	2.00	0.19	YES 0.3: YES 0.4	5 62.6 3 70.0	158.7 52.4	-2.63	flr-conc	HF	Edge	No HD STHD14	3.43	CMSTC16 No strap
1	B2	7.00					7.00	22.00	0.27	5.92	1.36	2.56	366	1.00	366	SW3	4.00	0.21	YES 0.3	4 25.8	5.6	3.11	flr-conc	HF	Edge	STHD14	0.00	No strap
1	C1	1.50					1.50	25.00	0.12	3.06	0.70	2.10	1397		WSWH18	8x8								WSW	H18x8			
1	C3	9.25					9.25	25.00	0.76	18.88	4.33	7.12	769	1.00	769	2W3	12.00	0.31	NO 0.3	1 71.7	8.9	7.19	flr-conc	HF	Edge	HDU14	0.00	No strap
	S =	75.25			1	Total OSB wall length = (feet)	50.00		S =	59.50	9.32	27.03	Warning-Wa	Total OSB Capacit (kips)	13.76													
							_								1													
Basem	ent Walls	(Side / S	ide Directi	on)																	Basement	Walls (Side / Si	de Directio	<u>n)</u>				
							Shear par	el capacity (Wi	nd or Seismic) =	Seismic											Hold down	is and windows	straps					
		т	Stor St Shear Pa 'otal Diaphra	y shear(kips) = ory height (ft) = nel height (ft) = gm width (ft) =	5.06 10.08 9.08 42.00					Accumul load ba	lated Shear = lance check =	5.06 Warning-W	The rest of the all loads do not	e story shear from match story shear	above has been tran	sferred into (foundation											
Story	Wall Mark	Wall L(ft)	Opening Width (ft)	Opening Height (ft)	Opening (max) to Edge (ft)	Plate to Opening (ft)	Effective Length (ft)	Trib. Width (ft)	Percent Sharing (%)	Effective Trib. Width	Story V(kips)	Sum V(kips)	Panel Shear (plf)	Height/Width Reduction (%) R = 2*L/H	Design Panel Shear (plf)	Wall Type	Floor DL Trib(ft)	Story DL(klf)	Walls/DL Sur Stacks? DL(k	m OTM klf) (k-ft)	RM (k-ft)	Resultant HD(kips)	HD TYPE	HD/Strap to DF or HF?	HD location Edge/Interior?	Resultant HD	Force at Window (Kips)	Window Strap
в	N/A CONC	RETE FOU	INDATION					сог		TION								CONC		N			CONC	RETE FOUND	ATION			
	S =	0.00			1	Total OSB wall length = (feet)	0.00]	S =	0.00	0.00	0.00	Warning-Wa	Total OSB Capacit (kips)	5.06													

Project		Sheet number:
	Granbois	L7
Subject		Date
	SHEAR WALL EQUATION DIAGRAM	4/6/2023

FORCE TRANSFER AROUND WINDOW CALCULATION (CANTILEVER PIER METHOD)

$V_{h} = v_{i \; panel} \; x \; L_{max}$
$V_v = HD_i$
$T_{h} = V_{h} (H_{w} / 2 + H_{s}) / H_{s}$

 $T_v =$ Is resisted by the continuous stud adjacent to the window.

Garage Portal Systems on Concrete Foundations

The Strong-Wall[®] high-strength wood shearwall garage portal system provides higher allowable shear load with reduced concrete anchorage requirements. Portal walls may be used in single- or double-portal applications and shall be installed with a minimum 3" x 11¼" single- or multi-ply header depending upon loading and span requirements.

Simpson

Codes: ICC-ES ESR-2652, City of LA Building Code Supplement and State of Florida FL5113

For product data and naming scheme information, see pp. 12-13.

Garage Header Rough Opening Height

Model No.	Trimmed Panel Height (in.)	H Curb (in.)	Rough Opening Height (in.)				
WSWH12x7	70	5½	6'-11½"1				
WSWH16X7 WSWH24x7	10	6	7'-0"1				
WSWH12x8	85½	0	7'-1½"				
WSWH16x8 WSWH24x8	021/	5½	8'-2¾"2				
	9374	6	8'-31⁄4"2				

- If required rough opening height exceeds table value, specify next taller panel and trim as necessary. The Strong-Wall high-strength wood shearwalls may be trimmed to a minimum height of 74¹/₂".
- Furring down garage header may be required for correct rough opening height.

Installation

C-L-SW21

© 2021 Simpson Strong-Tie Company Inc.

- Portal-frame connection kit is required for portal-frame applications.
- All panels may be trimmed to a minimum of 74½". Trim height from top of panel only, do not trim from sides or bottom. Drilling holes in the Strong-Wall high-strength wood shearwalls is not allowed except as shown on p. 36.
- Anchor bolt nuts should be finger tight plus ½ turn.
- Maximum shim thickness between Strong-Wall high-strength wood shearwalls and the top plates or header is 7%".
- Top connection installs with a combination of ¼" x 6" SDS Heavy-Duty Connector screws and SWS16150 Strong-Wall screws.
- Walls may also be used in 2x6 wall framing. Install the panel flush to the outside face of the framing and add furring to the opposite side.
- Walls may be installed with solid or multi-ply headers, see details 3, 4, 5, 6/WSWH4 for fastening and furring requirements on pp. 38–39.

Portal Frame Connection Kit

Model No.	Contents
WSWH-PK	4 (10-gauge) WSWH-PS straps

 Portal-frame connection kit comes with panels that are 100° or less in height. The kit must be ordered separately for panels over 100° tall.

Single Portal Installation US Patent 10,711,477

SIMPSON

Strong-Tie

Garage Portal Systems on Concrete Foundations

Portal Design Information

A portal frame under lateral loads causes the portal header to experience internal stresses in addition to those created by the primary loads (live, dead and snow). These additional stresses are called induced forces and must be considered when designing portal headers. To account for the induced forces from lateral loads, a concentrated end moment equal to the top-of-panel moment must be placed at the end of the header that is connected to the WSWH panel. For the WSWH12, WSWH18 and WSWH24, the moment induced into the portal header must be taken as 20%, 10% and 0%, respectively, of the total lateral moment at the base. The total lateral moment is calculated as the design shear times the panel height. For headers with typical residential uniform loads, the induced moment and shear forces from a portal-frame system do not control the design. This is due to the 1.60 load duration factor (CD) used in design when wind and seismic loads are included.

The lateral and vertical loads shown on p. 19 for portal frames assume that the header size falls within the portal-frame parameters listed in the table below.

Strong-Wall[®] High-Strength Wood Shearwall Portal Header Design Parameters

Header Design Parameter	Allowable Range
Width	3" – 5½"
Depth	11¼" – 18"
Clear Span	8' – 18' 6"
К	90 lb./in. – 4,000 lb./in.

- 1. Single- or multi-ply header members may be used.
- Maximum clear span for multi-ply 2x DF/SP header shall be limited to 16'-4".
- 3. Secondary moment, shear and axial forces shall be considered in header design.
- Header design shall be by designer and assume gravity loads only induce simple span moments in beam.
- Header stiffness (K) for use in WSWH portal system may be determined using the following equation:
 - K = (E x b x d³) / 12L³ where:
 - E = Header modulus of elasticity (psi)
 - b = Header width (in.)
 - d = Header depth (in.)
 - L = Header clear span (in.)

Alternative Garage Front Options

These alternative garage-front options may be used for applications when the Strong-Wall® high-strength wood shearwall is installed at the full height (option 1) or without the additional Portal-Frame Kit (option 2), when higher allowable load or reduced concrete anchorage is not needed. Refer to the Standard Application on Concrete Foundations on pp. 12–16 for product data and allowable load values.

For Garage Wall Option 2, the designer shall design for:

- 1. Shear transfer
- 2. Out-of-plane loading effect
- 3. Increased overturning and drift due to additional height

Garage Portal Systems on Concrete Foundations

Single-Wall Garage Portal System on Concrete Foundation

					2,500 psi	Concrete			3,000 psi Concrete					
Strong-Wall High-Strength	Panel	Allowable		Seismic ³			Wind			Seismic ³			Wind	
Wood Shearwall Model No.	Evaluation Height, H _e (in.) ⁷	Vertical Load, P (lb.) ⁵	Allowable ASD Shear Load, V (lb.)	Drift at Allowable Shear, ∆ (in.) ⁸	Anchor Tension at Allowable Shear, T (lb.) ¹¹	Allowable ASD Shear Load, V (lb.)	Drift at Allowable Shear, ∆ (in.) ⁸	Anchor Tension at Allowable Shear, T (lb.) ¹¹	Allowable ASD Shear Load, V (lb.)	Drift at Allowable Shear, Δ (in.) ⁸	Anchor Tension at Allowable Shear, T (lb.) ¹¹	Allowable ASD Shear Load, V (lb.)	Drift at Allowable Shear, ∆ (in.) ⁸	Anchor Tension at Allowable Shear, T (lb.) ¹¹
		1,000	1,780	0.39	14,550	2,285	0.53	18,715	1,780	0.39	14,550	2,285	0.53	18,715
WSWH12x7	78	4,000	1,780	0.39	14,550	2,285	0.53	18,715	1,780	0.39	14,550	2,285	0.53	18,715
		7,500	1,780	0.39	14,550	2,285	0.53	18,715	1,780	0.39	14,550	2,285	0.53	18,715
		1,000	3,980	0.38	22,345	4,580	0.47	25,715	3,980	0.38	22,345	4,580	0.47	25,715
WSWH18x7	78	4,000	3,980	0.38	22,345	4,580	0.47	25,715	3,980	0.38	22,345	4,580	0.47	25,715
		7,500	3,980	0.38	22,345	4,505	0.46	25,285	3,980	0.38	22,345	4,580	0.47	25,715
		1,000	7,450	0.30	33,210	7,950	0.35	35,430	7,450	0.30	33,210	8,260	0.36	36,815
WSWH24x7	78	4,000	7,450	0.30	33,210	7,565	0.33	33,715	7,450	0.30	33,210	8,260	0.36	36,815
		7,500	7,115	0.28	31,715	7,115	0.31	31,715	7,450	0.30	33,210	8,260	0.36	36,815
		1,000	1,590	0.42	14,280	2,065	0.57	18,520	1,590	0.42	14,280	2,065	0.57	18,520
WSWH12x8	85.5	4,000	1,590	0.42	14,280	2,065	0.57	18,520	1,590	0.42	14,280	2,065	0.57	18,520
		7,500	1,590	0.42	14,280	2,065	0.57	18,520	1,590	0.42	14,280	2,065	0.57	18,520
		1,000	3,550	0.41	21,845	4,580	0.56	28,185	3,550	0.41	21,845	4,580	0.56	28,185
WSWH18x8	85.5	4,000	3,550	0.41	21,845	4,425	0.54	27,245	3,550	0.41	21,845	4,580	0.56	28,185
		7,500	3,550	0.41	21,845	4,110	0.50	25,285	3,550	0.41	21,845	4,580	0.56	28,185
		1,000	6,425	0.33	31,385	7,250	0.41	35,430	6,425	0.33	31,385	7,535	0.43	36,815
WSWH24x8	85.5	4,000	6,425	0.33	31,385	6,900	0.39	33,715	6,425	0.33	31,385	7,535	0.43	36,815
		7,500	6,425	0.33	31,385	6,490	0.37	31,715	6,425	0.33	31,385	7,535	0.43	36,815
		1,000	1,435	0.45	14,050	1,860	0.60	18,190	1,435	0.45	14,050	1,860	0.60	18,190
WSWH12x8	93.25	4,000	1,435	0.45	14,050	1,860	0.60	18,190	1,435	0.45	14,050	1,860	0.60	18,190
		7,500	1,435	0.45	14,050	1,860	0.60	18,190	1,435	0.45	14,050	1,860	0.60	18,190
		1,000	3,170	0.44	21,290	4,130	0.60	27,735	3,170	0.44	21,290	4,130	0.60	27,735
WSWH18x8	93.25	4,000	3,170	0.44	21,290	4,060	0.59	27,245	3,170	0.44	21,290	4,130	0.60	27,735
		7,500	3,170	0.44	21,290	3,765	0.55	25,285	3,170	0.44	21,290	4,130	0.60	27,735
		1,000	6,240	0.37	33,240	6,650	0.43	35,430	6,240	0.37	33,240	6,910	0.45	36,815
WSWH24x8	93.25	4,000	6,240	0.37	33,240	6,330	0.41	33,715	6,240	0.37	33,240	6,910	0.45	36,815
		7.500	5.950	0.35	31.715	5.950	0.38	31.715	6.240	0.37	33.240	6.910	0.45	36.815

Allowable shear loads are applicable to installations on concrete with specified compressive strengths as listed using the ASD basic (IBC Section 1605.3.1) or the 1. alternative basic (IBC Section 1605.3.2) load combinations.

2. Load values include evaluation of bearing stresses on concrete foundations and do not require further evaluation by the designer. For installations on masonry foundations, bearing capacity shall be evaluated by the designer.

3. Seismic design based on 2018 IBC using R = 6.5. For other codes, use the seismic coefficients corresponding to light-frame bearing walls with wood structural panels or sheet-steel panels.

4. Allowable values shown apply to single-wall garage portal systems. The allowable shear load for a double-wall garage portal system, which consists of two walls with a header continuous across both panels, may be taken as twice the table value.

5. Allowable vertical load denotes the total maximum concentric vertical load permitted on the panel acting in combination with the allowable shear loads.

6. Allowable shear, drift and anchor tension values may be interpolated for intermediate height or vertical loads. For panels 74½"-78" tall, use the values for a 78"-tall panel.

7. To achieve required WSWH panel evaluation height, trim next tallest full-height panel defined in table on p. 13.

8. Drifts at lower design shear may be linearly reduced.

9. See p. 16 for allowable out-of-plane and axial capacities.

10. High-strength anchor bolts are required for anchor tension forces exceeding the allowable load for standard-strength bolts tabulated on pp. 22–23. See pp. 21-29 for WSWH-AB anchor bolt information and anchorage solutions.

11. Tabulated anchor tension values assume no resisting vertical load. Anchor tension loads at design shear values and including the effect of vertical load may be determined using the following equation: $T = [(k \times V \times H) / B] - P/2$, where:

- T = Anchor tension load (lb.)
- V = Design shear load (lb.)
- P = Applied vertical load (lb.)

© 2021 Simpson Strong-Tie Company Inc. C-L-SW21

- H = Panel height (in.)
- B = Moment arm (in.); 7.625" for WSWH12, 12.50" for WSWH18 and 17.50" for WSWH24
- k = Portal factor; 0.80 for WSWH12 panels 93¼" or less in height, 0.90 for WSWH18 panels 93¼" or less in height,
 - 1.00 for all other panels.

SIMPS

Strong-Tie

FOUNDATION CALCULATIONS

FOOTING REFERENCE PER PLAN

Wall Footing

LIC# : KW-06011993, Build:20.22.1.5

L120 Engineering and Design

(c) ENERCALC INC 1983-2021

DESCRIPTION: 1'-4" (16") Footing and Stem-wall (non retaining) - Max Loading (1500psf)

Code References

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : ASCE 7-16

General Information

Material Properties fc : Concrete 28 day strength fy : Rebar Yield Ec : Concrete Elastic Modulus Concrete Density	= = = =	2.50 ksi 40.0 ksi 3,122.0 ksi 145.0 pcf 0.90	Soil Design Values Allowable Soil Bearing Increase Bearing By Footing Weight Soil Passive Resistance (for Sliding) Soil/Concrete Friction Coeff.	= = =	1.50 ksf No 300.0 pcf 0.30
Analysis Settings Min Steel % Bending Reinf. Min Allow % Temp Reinf.	= = =	0.750	Increases based on footing Depth Reference Depth below Surface Allow. Pressure Increase per foot of depth when base footing is below	= = =	ft ksf ft
Min. Overturning Safety Factor Min. Sliding Safety Factor AutoCalc Footing Weight as DL:	=	1.0 : 1 1.0 : 1 Yes	Increases based on footing Width Allow. Pressure Increase per foot of width when footing is wider than	= =	ksf ft
Dimensions			Adjusted Allowable Bearing Pressure Reinforcing	=	1.50 ksf

Dimensions

Footing Width	=	1.330 ft	Footing Thickness	=	8.0 in	Bars along X-X Axis		
Wall Thickness	=	8.0 in	Rebar Centerline to E	dge of Cor	ncrete	Bar spacing	=	10.00
Wall center offset			at Bottom of footing =	=	3.0 in	Reinforcing Bar Size	=	# 4
from center of footing	=	0 in						

Applied Loads

		D	Lr	L	S	W	E	н
P : Column Load OB : Overburden	= -	1.0		0.750	0.40			k ksf
V-x	=							k
M-zz	=							k-ft
Vx applied	=	in a	bove top of f	footing				

Wall Footing LIC# : KW-06011993, Build:20.22.1.5

L120 Engineering and Design

(c) ENERCALC INC 1983-2021

DESCRIPTION: 1'-4" (16") Footing and Stem-wall (non retaining) - Max Loading (1500psf)

IGN SU	MMARY				Design OK
Fa	ctor of Safety	Item	Applied	Capacity	Governing Load Combination
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
Ut	ilization Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.9980	Soil Bearing	1.497 ksf	1.50 ksf	+D+0.750L+0.750S
PASS	0.03287	Z Flexure (+X)	0.1139 k-ft	3.464 k-ft	+1.20D+1.60L+0.50S
PASS	0.02607	Z Flexure (-X)	0.09031 k-ft	3.464 k-ft	+1.20D+L+0.20S
PASS	n/a	1-way Shear (+X)	0.0 psi	75.0 psi	n/a
PASS	0.0	1-way Shear (-X)	0.0 psi	0.0 psi	n/a

Detailed Results

Soil Bearing					
Rotation Axis &			Actual Soil Bea	aring Stress	Actual / Allowable
Load Combination	Gross Allowable	Xecc	-X	+X	Ratio
, D Only	1.50 ksf	0.0 in	0.8485 ksf	0.8485 ksf	0.566
, +D+L	1.50 ksf	0.0 in	1.412 ksf	1.412 ksf	0.942
, +D+S	1.50 ksf	0.0 in	1.149 ksf	1.149 ksf	0.766
, +D+0.750L	1.50 ksf	0.0 in	1.271 ksf	1.271 ksf	0.848
+D+0.750L+0.750S	1.50 ksf	0.0 in	1.497 ksf	1.497 ksf	0.998
, +0.60D	1.50 ksf	0.0 in	0.5091 ksf	0.5091 ksf	0.339
Overturning Stability					Units : k-ft
Rotation Axis &					
Load Combination	Overturning Moment	Res	sisting Moment	Stability Ratio	Status

Footing Has NO Overturning

Footing Flexure

Floxuro Avis & Load Combination	Mu	Which	Tension @ Bot.	As Req'd	Gvrn. As	Actual As	Phi*Mn	
	k-ft	Side ?	or Top ?	in^2	in^2	in^2	k-ft	Status
, +1.40D	0.06532	-X	Bottom	0.1728	Min Temp %	0.24	3.464	OK
, +1.40D	0.06532	+X	Bottom	0.1728	Min Temp %	0.24	3.464	OK
, +1.20D+1.60L	0.1056	-X	Bottom	0.1728	Min Temp %	0.24	3.464	OK
, +1.20D+1.60L	0.1056	+X	Bottom	0.1728	Min Temp %	0.24	3.464	OK
, +1.20D+1.60L+0.50S	0.1139	-X	Bottom	0.1728	Min Temp %	0.24	3.464	OK
, +1.20D+1.60L+0.50S	0.1139	+X	Bottom	0.1728	Min Temp %	0.24	3.464	OK
, +1.20D+L	0.087	-X	Bottom	0.1728	Min Temp %	0.24	3.464	OK
, +1.20D+L	0.087	+X	Bottom	0.1728	Min Temp %	0.24	3.464	OK
, +1.20D	0.05599	-X	Bottom	0.1728	Min Temp %	0.24	3.464	OK
, +1.20D	0.05599	+X	Bottom	0.1728	Min Temp %	0.24	3.464	OK
, +1.20D+L+1.60S	0.1135	-X	Bottom	0.1728	Min Temp %	0.24	3.464	OK
, +1.20D+L+1.60S	0.1135	+X	Bottom	0.1728	Min Temp %	0.24	3.464	OK
, +1.20D+1.60S	0.08245	-X	Bottom	0.1728	Min Temp %	0.24	3.464	OK
, +1.20D+1.60S	0.08245	+X	Bottom	0.1728	Min Temp %	0.24	3.464	OK
, +1.20D+L+0.50S	0.09527	-X	Bottom	0.1728	Min Temp %	0.24	3.464	OK
, +1.20D+L+0.50S	0.09527	+X	Bottom	0.1728	Min Temp %	0.24	3.464	OK
, +0.90D	0.04199	-X	Bottom	0.1728	Min Temp %	0.24	3.464	OK
, +0.90D	0.04199	+X	Bottom	0.1728	Min Temp %	0.24	3.464	OK
, +1.20D+L+0.20S	0.09031	-X	Bottom	0.1728	Min Temp %	0.24	3.464	OK
, +1.20D+L+0.20S	0.09031	+X	Bottom	0.1728	Min Temp %	0.24	3.464	OK

General Footing

LIC# : KW-06011993, Build:20.22.1.5

L120 Engineering and Design

(c) ENERCALC INC 1983-2021

DESCRIPTION: 16" (non retaining) stemwall footing - max point load (1500psf)

Code References

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : IBC 2018

General Information

Material Properties fc : Concrete 28 day strength fy : Rebar Yield Ec : Concrete Elastic Modulus Concrete Density φ Values Flexure	= = = =	60 3,12 14	2.5 ksi 0.0 ksi 2.0 ksi 5.0 pcf 90	Soil Design Values Allowable Soil Bearing Soil Density Increase Bearing By Footing Weight Soil Passive Resistance (for Sliding) Soil/Concrete Friction Coeff.	= = = =	1.50 ksf 110.0 pcf No 250.0 pcf 0.30
Shear Analysis Settings Min Steel % Bending Reinf. Min Allow % Temp Reinf. Min. Overturning Safety Factor	=	0.7 = = =	250 0.00180 1.0 : 1	Increases based on footing Depth Footing base depth below soil surface Allow press. increase per foot of depth when footing base is below	= = =	1.0 ft ksf ft
Min. Sliding Safety Factor Add Ftg Wt for Soil Pressure Use ftg wt for stability, moments & she Add Pedestal Wt for Soil Pressure	ars	= : : .	1.0 : 1 Yes Yes No	Increases based on footing plan dimension Allowable pressure increase per foot of de when max. length or width is greater than	on epth = =	ksf ft

Dimensions

Width parallel to X-X Axis	=	4.0 ft
Length parallel to Z-Z Axis	=	1.330 ft
Footing Thickness	=	8.0 in

Pedestal dimensions		
px : parallel to X-X Axis	=	48.0 in
pz : parallel to Z-Z Axis	=	8.0 in
Height	=	18.0 in
Rebar Centerline to Edge of	f Concrete	
at Bottom of footing	=	3.0 in

Reinforcing

Bars parallel to X-X Axis Number of Bars Reinforcing Bar Size	= =	#	2.0 4				
Bars parallel to Z-Z Axis Number of Bars Reinforcing Bar Size	= =	#	4.0 4				
Bandwidth Distribution Check (ACI 15.4.4.2) Direction Requiring Closer Separation							
	Bars	along Z-Z	Axis				
# Bars required within zone	49	.9 %					
# Bars required on each side	50	.1 %					

Applied Loads

		D	Lr	L	S	w	E	н
P : Column Load OB : Overburden	=	3.0		4.30				k ksf
M-xx M-zz	=							k-ft k-ft
V-x	=							k
V-z	=							k

General Footing

LIC# : KW-06011993, Build:20.22.1.5

DESCRIPTION: 16" (non retaining) stemwall footing - max point load (1500psf)

0.0

(c) ENERCALC INC 1983-2021

DESIGN SUMMARY

ESIGN SU	JMMARY				Design OK
	Min. Ratio	ltem	Applied	Capacity	Governing Load Combination
PASS	0.9913	Soil Bearing	1.487 ksf	1.50 ksf	+D+L about Z-Z axis
PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.0	Z Flexure (+X)	0.0 k-ft/ft	0.0 k-ft/ft	No Moment
PASS	0.0	Z Flexure (-X)	0.0 k-ft/ft	0.0 k-ft/ft	No Moment
PASS	0.02530	X Flexure (+Z)	0.1071 k-ft/ft	4.235 k-ft/ft	+1.20D+1.60L
PASS	0.02530	X Flexure (-Z)	0.1071 k-ft/ft	4.235 k-ft/ft	+1.20D+1.60L
PASS	n/a	1-way Shear (+X)	0.0 psi	67.082 psi	n/a
PASS	n/a	1-way Shear (-X)	0.0 psi	67.082 psi	n/a
PASS	n/a	1-way Shear (+Z)	0.0 psi	67.082 psi	n/a
PASS	n/a	1-way Shear (-Z)	0.0 psi	67.082 psi	n/a
PASS	n/a	2-way Punching	0.0 psi	67.082 psi	n/a
etailed Re	esults				

L120 Engineering and Design

Soil Bearing

Z-Z, +1.20D

Rotation Axis &		Xe	ecc Zeco	c Act	ual Soil Bearing	Stress @ Loo	ation	Actual / Allow
Load Combination	Gross Allowa	ble	(in)	Bottom, -2	Z Top, +Z	Left, -X	Right, +X	Ratio
X-X, D Only	1.50		n/a 0	.0 0.6789	0.6789	n/a	n/a	0.453
X-X, +D+L	1.50		n/a 0	.0 1.487	7 1.487	n/a	n/a	0.991
X-X, +D+0.750L	1.50		n/a 0	.0 1.285	5 1.285	n/a	n/a	0.857
X-X, +0.60D	1.50		n/a 0	.0 0.4073	3 0.4073	n/a	n/a	0.272
Z-Z, D Only	1.50		0.0 n	/a n/a	a n/a	0.6789	0.6789	0.453
Z-Z, +D+L	1.50		0.0 n	/a n/a	a n/a	1.487	1.487	0.991
Z-Z, +D+0.750L	1.50		0.0 n	/a n/a	a n/a	1.285	1.285	0.857
Z-Z, +0.60D	1.50		0.0 n	/a n/a	a n/a	0.4073	0.4073	0.272
Overturning Stability								
Rotation Axis &								
Load Combination		Overtu	rning Mom	ent	Resisting Mon	nent Stal	bility Ratio	Status
Footing Has NO Overturning								
Sliding Stability							A	ll units k
Force Application Axis Load Combination		Sli	ding Force		Resisting Fo	rce Stal	bility Ratio	Status
Footing Has NO Sliding								
Footing Flexure								
Flexure Axis & Load Combination	n <mark>Mu</mark> k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual As in^2	Phi*Mn k-ft	Status
X-X, +1.40D	0.04201	+Z	Bottom	0.1728	AsMin	0.20	4.235	ок
X-X, +1.40D	0.04201	-Z	Bottom	0.1728	AsMin	0.20	4.235	OK
X-X, +1.20D+1.60L	0.1071	+Z	Bottom	0.1728	AsMin	0.20	4.235	OK
X-X, +1.20D+1.60L	0.1071	-Z	Bottom	0.1728	AsMin	0.20	4.235	ОК
X-X, +1.20D+0.50L	0.05823	+Z	Bottom	0.1728	AsMin	0.20	4.235	OK
X-X, +1.20D+0.50L	0.05823	-Z	Bottom	0.1728	AsMin	0.20	4.235	OK
X-X, +1.20D	0.03601	+Z	Bottom	0.1728	AsMin	0.20	4.235	OK
X-X, +1.20D	0.03601	-Z	Bottom	0.1728	AsMin	0.20	4.235	ОК
X-X, +0.90D	0.0270	+Z	Bottom	0.1728	AsMin	0.20	4.235	OK
X-X, +0.90D	0.0270	-Z	Bottom	0.1728	AsMin	0.20	4.235	OK
Z-Z, +1.40D	0.0	-X	Тор	0.1728	AsMin	0.3008	6.168	OK
Z-Z, +1.40D	0.0	+X	Тор	0.1728	AsMin	0.3008	6.168	ОК
Z-Z, +1.20D+1.60L	0.0	-X	Тор	0.1728	AsMin	0.3008	6.168	OK
Z-Z, +1.20D+1.60L	0.0	+X	Тор	0.1728	AsMin	0.3008	6.168	OK
Z-Z, +1.20D+0.50L	0.0	-X	Тор	0.1728	AsMin	0.3008	6.168	ок
Z-Z, +1.20D+0.50L	0.0	+X	Тор	0.1728	AsMin	0.3008	6.168	ОК
Z-Z, +1.20D	0.0	-X	Top	0 1728	AsMin	0.3008	6 168	OK

0.1728

Тор

AsMin

0.3008

ΟΚ

6.168

General Footing LIC# : KW-06011993, Build:20.22.1.5

L120 Engineering and Design

(c) ENERCALC INC 1983-2021

DESCRIPTION: 16" (non retaining) stemwall footing - max point load (1500psf)

Footing Flexure

Flexure Axis & Load Combinatio	n <mark>Mu</mark> k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. A in^2	s Actual in^2	As Pr	าi*Mn k-ft	Status
Z-Z, +1.20D	0.0	+X	Тор	0.1728	AsMin	0.300	8	6.168	ок
Z-Z, +0.90D	0.0	-X	Тор	0.1728	AsMin	0.300	8	6.168	OK
Z-Z, +0.90D	0.0	+X	Тор	0.1728	AsMin	0.300	8	6.168	OK
One Way Shear									
Load Combination	Vu @ -X	Vu @	+X Vu	@-Z Vu	@ +Z	Vu:Max	Phi Vn	Vu / Phi*Vn	Status
+1.40D	0.00 p	osi	0.00 psi	0.00 psi	0.00 psi	0.00 psi	67.08 p	si 0.00	OK
+1.20D+1.60L	0.00 p	osi	0.00 psi	0.00 psi	0.00 psi	0.00 psi	67.08 p	si 0.00	OK
+1.20D+0.50L	0.00 p	osi	0.00 psi	0.00 psi	0.00 psi	0.00 psi	67.08 p	si 0.00	OK
+1.20D	0.00	osi	0.00 psi	0.00 psi	0.00 psi	0.00 psi	67.08 p	si 0.00	OK
+0.90D	0.00	osi	0.00 psi	0.00 psi	0.00 psi	0.00 psi	67.08 p	si 0.00	OK
Two-Way "Punching" Shear								All units	, k
Load Combination		Vu		Phi*Vn		Vu / Phi*Vn			Status
+1.40D		0.0	0 psi	89.44 p	osi	0			ОК
+1.20D+1.60L		0.0	0 psi	89.44 p	osi	0			OK
+1.20D+0.50L		0.0	0 psi	89.44 p	osi	0			OK
+1.20D		0.0	0 psi	89.44 p	osi	0			ОК
+0.90D		0.0	10 psi	89.44 p	osi	0			ОК
Created with ClearCalcs.com

Client	:	Date: Jul 29, 2022
Autho	r: Harrison Kliegl	Job #:
ENGINEERING & DESIGN	t: 3500 PSF Retaining Walls	Subject: 13'-0" Max Retaining Wall
Refere	IBC 2018, ASCE 7-16	
	Stability Summary	
Total Sliding Forces	$F_{sliding} = 3.49 \text{ kip/ft}$	
Total Resistance to Sliding	$F_{resist}=~2.6~{ m kip/ft}$	IBC 2018, CI 1806.3
Lateral Force Transmitted to Foot Restraint	ing $F_{restraint}=0.891{ m kip/ft}$	
Total Overturning Moment	$M_{overturn} = 16.4 ~ { m kip} \cdot { m ft}/{ m ft}$	
Total Restoring Moment	$M_{restore}=~34.3~{ m kip}\cdot{ m ft}/{ m ft}$	
72% Overturning Factor of Safety	$FS_{overturn}=2.09$	
Maximum Bearing Pressure	$q_{max}=~1210~{ m psf}$	
35% Soil Allowable Bearing Capacity	$q_a=~3500~{ m psf}$	
	Stem Summary	
Moment Demand of Wall Stem	$M_{u.stem}=~20.3~{ m kip}\cdot{ m ft}/{ m ft}$	
76% Moment Capacity of Wall Stem	$\phi M_{n,stem} = 26.8 ~{ m kip} \cdot { m ft}/{ m ft}$	ACI 318-14, CI 22.3
Shear Demand of Wall Stem	$V_{u,stem}=~4.7~{ m kip}/{ m ft}$	ACI 318-14, CI 9.4.3
64% Shear Capacity of Wall Stem	$\phi V_{n,stem}=~7.37~{ m kip}/{ m ft}$	ACI 318-14, CI 22.5
	Heel Summary	
Moment Demand of Heel	$M_{u\ beel}=\ 2.43\ { m kip} \cdot { m ft}/{ m ft}$	ACI 318-14, CI 13.2.7.1
10% Moment Capacity of Heel	$\phi M_{n,heel}=24.3~{ m kip}\cdot{ m ft}/{ m ft}$	ACI 318-14, CI 22.3
Shear Demand of Heel	$V_{u,heel}=~3.24~{ m kip/ft}$	ACI 318-14, CI 9.4.3
33% Shear Capacity of Wall Base	$\phi V_{n,heel}=~9.68~{ m kip/ft}$	ACI 318-14, CI 22.5
Moment Demand of Toe	$M_{u tos} = 22.7 \text{ kip} \cdot \text{ft}/\text{ft}$	ACI 318-14, CI 13.2.7.1
93% Moment Capacity of Toe	$\phi M_{n.toe}=~24.3~{ m kip}\cdot{ m ft}/{ m ft}$	ACI 318-14, CI 22.3
Shear Demand of Toe	$V_{u,toe}=~6.28~{ m kip/ft}$	ACI 318-14, CI 9.4.3
65% Shear Capacity of Toe	$\phi V_{n.toe}=~9.68~{ m kip/ft}$	ACI 318-14, CI 22.5
	,	

- Concrete Wall - Soil Cover - Backfill

		•	
Source of Soil Properties		Same as Backfill	
Allowable Bearing Capacity of Base Soil	$q_{a,input} =$	$3500 \mathrm{\ psf}$	
Soil-Footing Friction Coefficient	$\mu_{input} =$	0.45	
Base Soil Cohesion	$c_{base,input} =$	0 psf	
Maximum Allowable Cohesion as Proportion of Dead Load	$c_{max} =$	0.5	
Soil-Footing Friction Coefficient	$\mu =$	0.45	If presumptive values are used: IBC 2018 Table 1806.2
Base Soil Cohesion	$c_{base} =$	$0 \mathrm{psf}$	If presumptive values are used: IBC 2018 Table 1806.2

	Water Table	
Height of Water Table	$h_{water}=~0~{ m ft}$	
Unit Weight of Water	$\gamma_{water}=~62.4~{ m pcf}$	
	Concrete Properties	
Concrete Strength	$f_c^\prime=~2500~{ m psi}$	ACI 318-14 Table 19.2.1.1
Concrete Weight Classification	Normalweight	ACI 318-14, Cl 19.2.4.2
Reinforcement Yield Strength	$f_y=~60000~{ m psi}$	ACI 318-14 Table 20.2.2.4a
	Stem Reinforcement	
Stem Concrete Cover	$c_{stem}=~1.5$ in	ACI 318-14 Table 20.6.1.3.1
Main Reinforcement Size	#5	
Main Reinforcement Spacing	$s_{stem}=~4.5$ in	ACI 318-14, Cl 25.2.1 (minimum spacing) and Cl 7.7.2. (maximum spacing)
	— Heel Reinforcement (Top Bars) —	
Heel Concrete Cover	$c_{heel}=~3~{ m in}$	ACI 318-14 Table 20.6.1.3.1
Heel Reinforcement Size	#4	
Heel Reinforcement Spacing	$s_{heel}=~4.5~{ m in}$	ACI 318-14, Cl 25.2.1 (minimum spacing) and Cl 7.7.2. (maximum spacing)
	Toe Reinforcement (Bottom Bars)	L
Include Toe Reinforcement?	Yes	
Toe Concrete Cover	$c_{toe}=~3~{ m in}$	ACI 318-14 Table 20.6.1.3.1
Toe Reinforcement Size	#4	
Toe Reinforcement Spacing	$s_{toe}=~4.5$ in	ACI 318-14, Cl 25.2.1 (minimum spacing) and Cl 7.7.2. (maximum spacing)
	Shrinkage / Temperature Reinforcemen	nt
Shrinkage/Temperature Reinforcement	#4	,
Stem Shrinkage/Temperature Bar Spacing	$s_{\ell,stem}=~10~{ m in}$	ACI 318-14, CI 7.7.2.3
Footing Shrinkage/Temperature Bar Spacing	$s_{\ell,footing}=~6$ in	ACI 318-14, CI 7.7.2.3
	Stem Reinforcement Depth & Spacing	
Depth to Stem Reinforcement	$d_{stem}=~8.19$ in	
Area of Vertical Tension Reinforcement	$A_{s,stem}=~0.827~{ m in^2/ft}$	
	Heel Reinforcement Depth & Spacing	
Heel Depth to Reinforcement	$d_{had} = 10.7$ in	ACI 318-14, CI 13.3.1.2
Area of Heel Reinforcement	$A_{s,heel} = m 0.533~in^2/ft$	
	Too Painforcement Donth & Specing	
Toe Depth to Reinforcement	$d_{t} = 10.7$ in	ACI 318-14 CI 13.3.1.2
Area of Toe Reinforcement	$a_{toe}=10.7~{ m m}$ $A_{s,toe}=0.533~{ m in}^2/{ m ft}$	
Design Code for Load Combinations	Design Criteria	ada (IRC) 2018
Design Code for Load Combinations	coue = international Building C	UUE (IDC) 2018
	ALLIVE CASE (ND)	
Consider Resisting Soil Processes for	105	
Stability Checks?	No	

Consider Soil Above Toe for Stability Checks?	No	
Consider Resisting Pressure from Soil Above Toe for Strength Design?	No	
Sliding Minimum Factor of Safety	$FS_{\min,sliding}$ 1=5	IBC 2018, Cl 1807.2.3
Overturning Minimum Factor of Safety	$FS_{\mathrm{min},ovt}=1.5$	IBC 2018, Cl 1807.2.3
Unfactorec	l Vertical and Horizontal Loads for Stability Design	

Backfill Soil Width $w_s = 1$ ft, 6 in $W_{stem}=~1.73~{ m kip/ft}$ Weight of Wall Stem $W_{heel} = 0.263 \text{ kip/ft}$ Weight of Heel Weight of Toe $W_{toe}=~0.992~{ m kip/ft}$ $W_{bf}=~2.41~{ m kip/ft}$ Weight of Backfill Soil $P_D=~0~{ m kip/ft}$ Lateral Force Due to Dead Load Surcharge $P_L=~0.0588~\mathrm{kip/ft}$ Lateral Force Due to Live Load Surcharge $P_{bf}=~3.43~{ m kip/ft}$ Lateral Force Due to Backfill Passive Force of Soil on Footing $P_{p,footing} = 0.321 \text{ kip/ft}$ IBC 2018, CI 1806.3.3 $P_{p,stem} = 0.0167 \text{ kip/ft}$ Passive Force of Soil Above Toe on Stem $P_{a,footing} = 0.0374 \text{ kip/ft}$ Active Force of Soil on Footing IBC 2018, CI 1806.3.3 Active Force of Soil Above Toe on Stem $P_{a,stem}=~0.00194~\mathrm{kip/ft}$

Tabulated Soil Loads

Vertical Loads (Resisting)	$\mathbf{W} =$				
Element	Unfactored Forces $W_{unfactored}$ (kip/ft)	Load Factor ξ	Weight W (kip/ft)	Moment Arm y (ft)	Restoring Moment $M_{restore}$ (kip \cdot ft/ft)
Dead Load Surcharge	0	1	0	7.25	0
Wall Stem	1.73	1	1.73	6.09	10.5
Wall Footing	1.4	1	1.4	4	5.6
Soil Cover Above Toe	0.236	1	0.236	2.84	0.67
Backfill Above Water Table	2.41	1	2.41	7.25	17.5

Live Load Surcharge Vertical Loads (Soil Bearing) $\mathbf{W}_L =$

Element Unfactored Forces $W_{unfactored}$ (kip/ft) Load Factor ξ Weight W (kip/ft) Moment Arm y (ft) Restoring Moment $M_{restore}$ (kip \cdot ft/ft) Live Load Surcharge 0.0225 0.0225 7.25 0.163 1 Lateral Loads $\mathbf{H} =$ IBC 2018, CI 1605.2 Element Unfactored Forces $H_{unfactored}$ (kip/ft) Load Factor ξ Lateral Load H (kip/ft) Moment Arm y (ft) Overturning Moment $M_{overturn}$ (kip \cdot ft/ft) Dead Load Surcharge 0 1 0 7 0 7 Live Load Surcharge 0.0588 1 0.0588 0.412 Backfill 3.43 1 3.43 4.67 16 $\mathbf{Fp} =$ Passive Soil Loads (Resisting Sliding) Element Unfactored Passive Forces $F_{p,unfactored}$ (kip/ft) Load Factor ξ Passive Lateral Resisting Load F_p (kip/ft) Soil Against Toe Face 0.321 0.193 0.6 Active Soil Loads (Resisting Overturning) $\mathbf{Fa} =$ Unfactored Active Forces $F_{a,unfactored} \left(\rm kip/ft \right)$ Load Factor ξ Active Resisting Moment M_a (kip \cdot ft/ft) Active Lateral Resisting Load F_a (kip/ft) Moment Arm y (ft) Element

Element Unfactored Active Forces P_{a,unfactored} (kip/it) Load Factor ξ Active Lateral Resisting Load P_a (kip/it) Moment Arm y (it) Active Resisting Moment M_a (kip·it) Soil Against Toe Face 0.0374 0.6 0.0225 0.46 0.0103

Stability Analysis - Sliding Loads

Total Vertical Loa	ads (Resisti	ng)	W	$V_{total} =$	5.77 ki	$\mathrm{p/ft}$					
Total Passive Loa	ads (Resisti	ng)	F_{p} ,	$_{o,total} =$	0.193	m kip/ft					
			Stabil	lity Analy	vsis - Ov	erturnin	loads				
Total Overturnin	ng Moment		M	1	16.4 ki	n ∙ ft/ft					
Total Restoring N	Moment fro	om Gravity	Maa		34.3 ki	p 10/10 p∙ft/ft					
				s,grao		F/					
		0	- Stabil	lity Anal	ysis - 50	il Bearing	Check				
Eccentricity (Live				<i>e</i> =	0 ft, 10	.9 m 7 :					
Bearing Pressure	e Ludu Over	neer)		$e_L =$	0 11, 10	• 1 111			IBC 2018, CI	1605.2	
Bearing riessard		Loc	ation	Live	Load Not Ov	er Heel q ($_{ m psf}$)	Live Load O	iver Heel q_L (psf)		
		Toe				121)	12	210		
		At d from	n stem fae	ce		62	5	e	530		
		Stem face	e			51	5	5	521		
		Heel				223	3	2	238		
		Luc									
Lataral Farra			tored Ver	tical Loa	ads for S	structura	Strength I	Design			
Lateral Force on Surcharge	i Stem Due i	to Dead Loa	$P_{D,}$	$_{,stem} =$	$0 \mathrm{kip}/\mathrm{ft}$;					
Lateral Force on	n Stem Due 1	to Live Load	$P_{L,}$	$_{,stem} =$	0.0539	kip/ft					
Sultinalge											
Lateral Force on	Stem Due 1	to Backfill	Pr.	. —	$2.88 \mathrm{ki}$	n/ft					
Lateral Force on	n Stem Due 1	to Backfill	$P_{bf,}$	$_{,stem} =$	2.88 ki	p/ft	1				
Lateral Force on	n Stem Due 1	to Backfill	P _{bf} ,	, _{stem} = uctural S	2.88 ki	p/ft Design l	oads				
Lateral Force on	n Stem Due t ads			stem = uctural S $\mathbf{SL} =$	2.88 ki	p/ft Design l	oads	Momen	IBC 2018, Cl	1605.2 Stem Moment	M. (1.in 8./9)
Lateral Force on Lateral Stem Loa Element Dead Load Sur	ads	to Backfill	P _{bf} , Stru I (kip/ft) LC	$stem =$ uctural S $SL =$ $oad Factor \xi$ 1.6	2.88 ki Strength	p/ft Design l	oads H_u (kip/ft)) Momen 0	IBC 2018, CI it Arm <i>y</i> (ft) 6.42	1605.2 Stem Moment	$M_{u,stem}$ (kip \cdot ft/ft) 0
Lateral Force on Lateral Stem Loa Element Dead Load Sur Live Load Surc	ads urcharge		P _{bf} , Stru 0 0.0539	$s,stem =$ uctural S $SL =$ $0.000 \text{ Factor } \xi$ 1.6	2.88 ki Strength	p/ft Design l	oads .oads H _u (kip/ft)) Momen 0	IBC 2018, CI it Arm <i>y</i> (ft) 6.42 6.42	1605.2 Stem Moment	<i>M_{u,stem}</i> (kip · ft/ft) 0 0.553
Lateral Force on Lateral Stem Loa Element Dead Load Sur Live Load Surc Backfill	ads rcharge charge	to Backfill	P _{bf} , Stru (kip/ft) LC 0 0.0539 2.88	$_{,stem} =$ $uctural S$ $SL =$ $0.000 Factor \xi$ 1.6 1.6 1.6	2.88 ki Strength Factore	p/ft Design l ed Horizontal	oads .oads H _u (kip/ft) 0.0862 4.6) Momen 0 2	IBC 2018, CI it Arm <i>y</i> (ft) 6.42 6.42 4.28	1605.2 Stem Moment	M _{u,stem} (kip · ft/ft) 0 0.553 19.7
Lateral Force on Lateral Stem Loa Element Dead Load Sur Live Load Surc Backfill	ads rcharge charge	to Backfill	P _{bf} , Stru (kip/ft) Lc 0 0.0539 2.88	,stem = uctural S SL = 0 ad Factor ξ 1.6 1.6 1.6 1.6	2.88 ki Strength Factore 6 6 6	p/ft Design l	oads H _u (kip/ft)	Momen 0 2 1	IBC 2018, Cl at Arm <i>y</i> (ft) 6.42 6.42 4.28	1605.2 Stem Moment	M _{u,stem} (kip · ft/ft) 0 0.553 19.7
Lateral Force on Lateral Stem Loa Element Dead Load Surc Backfill Heel Loads	ads rcharge charge	to Backfill	P _{bf} , Stru (kip/ft) Lc 0 0.0539 2.88 2.88	stem = uctural S SL = $0ad Factor \xi$ 1.6 1.6 HL = cip/ft) Lci	2.88 ki Strength Factore 6 6 Dad Factor §	p/ft Design l ed Horizontal Factored	oads H _u (kip/ft)	Momen 0 2 1	IBC 2018, Cl it Arm y (ft) 6.42 6.42 4.28	1605.2 Stem Moment	$M_{u,stem}$ (kip \cdot ft/ft) 0 0.553 19.7 · $M_{u,heel}$ (kip \cdot ft/ft)
Lateral Force on Lateral Stem Loa Element Dead Load Surce Backfill Heel Loads Eleme Dead Load Surce	ads u rcharge charge charge charge	to Backfill	P _{bf} , Stru (kip/ft) LC 0 0.0539 2.88 2.88	,stem = uctural S SL = 0 ad Factor & 1.(1.(1.(HL = 0	2.88 ki 5trength Factore 6 6 6 6 6 6 6 1.2	p/ft Design l dHorizontal Factored 2	0.0862 0.0862 0.0865 4.6 Weight W_u (kip/s	Momen 0 - 2 - 1 - 6 -	IBC 2018, CI at Arm y (ft) 6.42 6.42 4.28 ent Arm y (ft) 0.75	1605.2 Stem Moment	$M_{u,stem}$ (kip \cdot ft/ft) 0 0.553 19.7 $M_{u,heel}$ (kip \cdot ft/ft) 0
Lateral Force on Lateral Stem Loa Element Dead Load Sur Live Load Surc Backfill Heel Loads Eleme Dead Load Surc	ads u rcharge charge ent rcharge charge charge	to Backfill	P _{bf} , Stru (ktip/ft) LC 0 0.0539 2.88 2.88 2.88 0.0	stem = $uctural S$ $SL =$ 1.6 1.6 $HL =$ 0 0 0 0	2.88 ki 5trength 5 Factore 6 6 6 1.2 1.6	p/ft Design l Horizontal Factored	oads H _u (kip/ft) 0.0862 4.6 Weight W _u (kip/	Momen 0 2 1 k) Momen 0	IBC 2018, CI at Arm <i>y</i> (ft) 6.42 6.42 4.28 ent Arm <i>y</i> (ft) 0.75 0.75	1605.2 Stem Moment	$M_{u,stem}$ (kip \cdot ft/ft) 0 0.553 19.7 $\cdot M_{u,heel}$ (kip \cdot ft/ft) 0 0.027
Lateral Force on Lateral Stem Loa Element Dead Load Sur Live Load Surc Backfill Heel Loads Eleme Dead Load Sur Live Load Surc Heel Weight	ads rcharge charge charge charge	to Backfill	P _{bf} , Stru (kip/ft) Lc 0 0.0539 2.88 2.88 2.88 0.0 0.0 0.0 0.0	,stem = uctural S SL = 0 ad Factor & 1.6 1.6 1.6 HL = 0 0 0 0 0 0 2225 .263	2.88 ki 5trength Factore 6 6 6 2000 Factor § 1.2 1.6 1.2	p/ft Design I Horizontal Factored 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3	oads H _u (kip/ft) 0.0862 4.6 Weight W _u (kip/ 0.03	Momen 0 2 1 5 6 15	IBC 2018, Cl it Arm y (ft) 6.42 6.42 4.28 ent Arm y (ft) 0.75 0.75 0.75	1605.2 Stem Moment	M _{u,stem} (kip · ft/ft) 0 0.553 19.7 : M _{u,heel} (kip · ft/ft) 0 0.027 0.236
Lateral Force on Lateral Stem Loa Element Dead Load Sur Live Load Surc Backfill Heel Loads Eleme Dead Load Surc Live Load Surc Heel Weight Backfill Above	ads ads rcharge charge charge charge charge charge charge	to Backfill	P _{bf} , Stru (kip/ft) Lc 0 0.0539 2.88 2.88 C 0.0 0.0 0.0 2.88	,stem = uctural S SL = 0 ad Factor § 1.6 1.6 1.6 HL = 0 0 0 0 0 0 2225 2.41	2.88 ki 5trength Factore 6 0 0 0 1.2 1.2 1.2 1.2 1.2	p/ft Design I Horizontal Factored 2 2 2 2	0.0ads H _u (kip/ft) 0.0862 4.6 Weight W _u (kip/ 0.03 0.3	Momen 0 2 1 1 6 1 3 6 5 3 9 9 9	IBC 2018, Cl it Arm y (ft) 6.42 6.42 4.28 ent Arm y (ft) 0.75 0.75 0.75 0.75	1605.2 Stem Moment	$M_{u,stem}$ (kip \cdot ft/ft) 0 0.5553 19.7 $M_{u,heel}$ (kip \cdot ft/ft) 0 0.027 0.236 2.17
Lateral Force on Lateral Stem Loa Element Dead Load Surc Backfill Heel Loads Eleme Dead Load Surc Live Load Surc Heel Weight Backfill Above Toe Loads (Shea	ads rcharge charge cha	to Backfill	P _{bf} , Stru (kip/ft) LC 0 0.0539 2.88 2.88 2.88 0.0 0.0 0.0 1 1 1 1 1 1 1 1 1 1 1 1 1	$stem =$ $uctural S$ $SL =$ $0 ad Factor \xi$ $1.($ $1.($ $HL =$ 0 0 0225 $.263$ 2.41 $\GammaL_V =$	2.88 ki 5trength Factore 6 6 1.2 1.6 1.2 1.2	p/ft Design I Horizontal Factored 2 2 2 2	0.0ads 0.0ads H _u (kip/ft) 0.0862 4.6 Weight W _u (kip/ 0.03 0.3	 Momen Momen 2 1 Momen 0 36 37 39 	IBC 2018, CT at Arm y (ft) 6.42 6.42 4.28 ent Arm y (ft) 0.75 0.75 0.75	1605.2 Stem Moment	$M_{u,stem}$ (kip \cdot ft/ft) 0 0.553 19.7 $M_{u,heel}$ (kip \cdot ft/ft) 0 0.027 0.236 2.17
Lateral Force on Lateral Stem Loa Element Dead Load Sur Live Load Surc Backfill Heel Loads Eleme Dead Load Surc Live Load Surc Heel Weight Backfill Above Toe Loads (Shea	ads u rcharge charge ent charge water Ta ar)	to Backfill	Pbf, Stru I (kip/ft) Lc 0 0 0.0539 2.88 2.88	stem = $stem =$ s	2.88 ki Strength Factore 6 6 6 1.2 1.2 1.2 1.2 1.2	p/ft Design I Horizontal Factored C	0 oads H _u (kip/ft) 0.0862 4.6 Weight W _u (kip/ 0.02 0.3 2.8 Load Factor ξ	Momen 0 2 1 momen 0 36 15 389	IBC 2018, CI it Arm y (ft) 6.42 6.42 4.28 ent Arm y (ft) 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	1605.2 Stem Moment	$M_{u,stem}$ (kip \cdot ft/ft) 0 0.553 19.7 $M_{u,heel}$ (kip \cdot ft/ft) 0 0.027 0.236 2.17
Lateral Force on Lateral Stem Loa Element Dead Load Sur Live Load Surc Backfill Heel Loads Eleme Dead Load Surc Live Load Surc Heel Weight Backfill Above Toe Loads (Shea	ads U rcharge charge ch	to Backfill Infactored Forces E Unfactore Unfactore Libele Element S Soil Press	Pbf, I (kip/ft) LC 0 0 0.0539 2.88 2.88 0 2.88 0 0.05 0 0.0539 0 0.05 0 0.05 0 0.05 0 0.0 0 0.0 2 0.0	stem = stem	2.88 ki 5trength Factore 6 6 0 0 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	p/ft Design I ed Horizontal Factored 2 3 2 4 4.39	0.0ads H _u (kip/ft) 0.0862 4.6 Weight W _u (kip/ 0.03 0.3 2.8 Load Factor ξ 1.6	Momen 0 - 2 - 1 - 0 - 36 - 15 - 389 -	IBC 2018, Cl it Arm y (ft) 6.42 6.42 4.28 ent Arm y (ft) 0.75 0.75 0.75 0.75 0.75 0.75	1605.2 Stem Moment	M _{u,stem} (kip · ft/ft) 0 0.553 19.7 : M _{u,heel} (kip · ft/ft) 0 0.027 0.236 2.17
Lateral Force on Lateral Stem Loa Element Dead Load Surc Backfill Heel Loads Eleme Dead Load Surc Live Load Surc Heel Weight Backfill Above Toe Loads (Shea	ads rcharge charge cha	to Backfill	Pbf, I (kip/ft) LC 0 0 0.0539 2.88 2.88 2 ed Forces W (ki 0.0 0.0 0. 2 1 0 0 0.0539 2 2.88 2 0.05 2 0.00 0.0 0.0 2 0.0 0. 2 1 wure 0	stem = stem	2.88 ki 5trength 5 Factore 6 6 6 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	p/ft Design I ed Horizontal Factored 2 3 2 4.39 -0.835	0.0ads .0ads H _u (kip/ft) 0.086: 4.6 Weight W _u (kip/ 0.03 0.3 2.8 Load Factor <i>ξ</i> 1.6 0.9	Momen 0 - 2 - 1 - 6 - 36 - 15 - 369 -	IBC 2018, CI at Arm y (ft) 6.42 6.42 4.28 ent Arm y (ft) 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	1605.2 Stem Moment Heel Moment cip/ft) 7.03 .752	M _{u,stem} (kip · ft/ft) 0 0.553 19.7 :M _{u,heel} (kip · ft/ft) 0 0.027 0.236 2.17
Lateral Force on Lateral Stem Loa Element Dead Load Sur Dead Load Sur Backfill Heel Loads Eleme Dead Load Sur Live Load Surc Heel Weight Backfill Above Toe Loads (Shea	ads u rcharge charge charge charge charge water Ta ar) Upwards Toe Wei nent)	to Backfill	Pbf, I (kip/ft) Lc 0 0 0.0539 2.88 2.88 2.88 2.88 2.88 0 0.0 0.0539 2.88 0 0.0 0.0539 2.88 0.00 0.0 0.01 2.88 0.02 0.0 0.03 0.0 0.04 0.00 0.05 2.88 0.00 0.0 0.01 2.88 0.02 2.88 0.03 0.00 0.04 0.00 0.05 2.88 0.05 2.88 0.00 0.00 0.01 2.88 0.02 2.88 0.03 2.88 0.04 2.88 0.05 2.88 0.04 2.88 0.05 2.88 0.04 2.88 0.94 2.94 <	stem = $stem =$ $stem =$ $stem =$ $stem =$ $stem =$ 1.0	2.88 ki Strength Factore 6 6 6 1.2 1.2 1.2 1.2 r Load at d 1	p/ft Design I Horizontal Factored Factored C C C C C C C C C C C C C C C C C C C	0ads 0.0ads H _u (kip/ft) 0.0862 4.6 0.03 0.03 0.3 2.8 Load Factor <i>ξ</i> 1.6 0.9	Momen 0 2 1 Momen 0 36 15 389 Factored S	IBC 2018, Cl it Arm y (ft) 6.42 6.42 4.28 ent Arm y (ft) 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	1605.2 Stem Moment . Heel Moment cip/ft) 7.03 .752	$M_{u,stem}$ (kip \cdot ft/ft) 0 0.553 19.7 $M_{u,heel}$ (kip \cdot ft/ft) 0 0.027 0.236 2.17
Lateral Force on Lateral Stem Loa Element Dead Load Surce Backfill Heel Loads Eleme Dead Load Surce Live Load Surce Heel Weight Backfill Above Toe Loads (Shea	ads U rcharge charge ch	to Backfill	Pbf, Stru (kip/ft) Lc 0 0 0.0539 2.88 2.88 2.88 ed Forces W (ki 0.0 0.0 0.0 0.0 2.88 ed Forces W (ki 0.0 0.0 2 unfactored 0.0	stem = uctural S SL = $coad Factor \xi$ 1.(1.(1.(1.(HL = cip/ft) LC 0 0 0 0 2.255 2.41 $\Gamma L_V =$ mctored Sheaa $\Gamma L_M =$ Tota Loads M	2.88 ki Strength Factore 6 6 6 1.2 1.6 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	p/ft Design I ed Horizontal ed Horizontal g	.oads Hu (kip/ft) .oads Hu (kip/ft) 0.0862 4.6 Weight Wu (kip/ft) 0.03 0.03 0.03 2.8 Load Factor £ 1.6 0.9	Moment 0	IBC 2018, Cl it Arm y (ft) 6.42 6.42 4.28 ent Arm y (ft) 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	1605.2 Stem Moment . Heel Moment	M _{u,stem} (kip · ft/ft) 0 0.553 19.7 : M _{u,heel} (kip · ft/ft) 0 0.027 0.236 2.17
Lateral Force on Lateral Stem Loa Element Dead Load Sur Dead Load Sur Backfill Heel Loads Eleme Dead Load Sur Live Load Sur Live Load Surc Heel Weight Backfill Above Toe Loads (Shea	ads U rcharge charge ch	to Backfill	Pbf, I (kip/ft) Lc 0 0 0.0539 2.88 2.88 2 ed Forces W (ki 0 0.0 0.0 0.0	stem = uctural S SL = ad Factor S 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0 0 0 0 2225 2.63 2.41 $\Gamma L_V =$ $r L_M =$ Toe Loads B	2.88 ki Strength Factore 6 6 6 1.2 1.2 1.2 1.2 1.2 1.2 1.2 4.9	p/ft Design I d Horizontal Factored Factored C d // (kip/ft) 4.39 -0.835 Load Factor 1.	.oads Hu (kip/ft) .oads Hu (kip/ft) 0.0862 4.6 Weight Wu (kip/ft) 0.037 0.037 0.037 2.8 Load Factor £ 1.6 0.9	Momer 0 2 1 Momer 0 36 15 389 Factored S	IBC 2018, CI It Arm y (ft) 6.42 6.42 4.28 ent Arm y (ft) 0.75	1605.2 Stem Moment Heel Moment dip/ft) 7.03 .752 I_u (kip · ft/ft) 25.2	$M_{u,stem}$ (kip \cdot ft/ft) 0 0.553 19.7 $M_{u,heel}$ (kip \cdot ft/ft) 0 0.027 0.236 2.17

Resistance Factor in Bending	$\phi_b=~0.9$	ACI 318-14. Table 21.2.2
Factored Moment Capacity	$\phi M_n = ~26800~{ m lb}\cdot{ m ft}/{ m ft}$	ACI 318-14, 8.5.1.1a
	Heel Flexural Analysis (ACI 318-14, CI 22.2)	l
Tension Reinforcement Strain	$arepsilon_t = 0.0188$	ACI 318-14, Cl 22.2.2.4.1 and Cl 7.3.3.1 for strain limit
Resistance Factor in Bending	$\phi_b=~0.9$	ACI 318-14. Table 21.2.2
Factored Moment Capacity	$\phi M_{n,heel}=~24300$ lb \cdot ft/ft	ACI 318-14, 8.5.1.1a
	Toe Flexural Analysis (ACI 318-14, Cl 22.2)	
Tension Reinforcement Strain	$arepsilon_t = 0.0188$	ACI 318-14, CI 22.2.2.4.1 and CI 7.3.3.1 for strain limit
Resistance Factor in Bending	$\phi_b=~0.9$	ACI 318-14. Table 21.2.1
Factored Moment Capacity	$\phi M_{n,toe}=~24300$ lb \cdot ft/ft	ACI 318-14, 8.5.1.1a
	Shear in Stem (ACI 318-14, Cl 22.5)	
Resistance Factor in Shear	$\phi_v=~0.75$	ACI 318-14 Table 21.2.1
Factored Stem Shear Capacity	$\phi V_{n,stem}=~7370~{ m plf}$	ACI 318-14, CI 22.5.5
	Shear in Heel (ACI 318-14, Cl 22.5)	
Factored Base Shear Capacity	$\phi V_{n,base}=~9670~{ m plf}$	ACI 318-14, CI 22.5.5
	Shear in Toe (ACI 318-14, Cl 22.5)	
Resistance Factor in Shear (Toe)	$\phi_{v,toe}=~0.75$	ACI 318-14 Table 21.2.1
Factored Toe Shear Capacity	$\phi V_{n,toe}=~9670~{ m plf}$	ACI 318-14, Cl 22.5.5
	Comments	

MATERIAL PR	OPERTIES							
FOOTING								
fc' (psi)	Ec (psi)	Density (lbf/ft ³)	Width (ft)		Length (ft)	0	Depth (in)	Volume (ft ³)
2500	2880952	145	2		2		10	3.33
CALCULATION VARIA	ABLES							
Bo (in)	Ф-Х	Φ-Υ						
0	0	0						
COLUMN								
Width (in)	Length (in)	Material	Offset (in)					
8	24	Concrete	0					
SOIL								
Bearing Strength (lbf/	ft ²) Density (lbf/ft ³)	Cohesion	Friction Angle		Depth (ft)	Rankine	Coefficient (Kp)	
1500	140	0	30		0		3	
REBAR								
Bar Size #	# Bars Long	# Bars Short	fy (psi)		Es (psi)			
4	3	3	40000		2.9E+07			
PASS-FAIL								
		PASS/FAIL	MAGNITUDE	STRENGTH	LOAD	СОМВО		
Soil Be	aring Pressure (lbf/ft ²)	PASS (0.0%)	1500.0	1500.0	I	D+L		
	One-Way Shear Y (lbf)	PASS (95.5%)	525.0	11700.0	1.2D+1	.6L+0.5Lr		
	Moment Y (lbf-ft)	PASS (70.8%)	933.3	3200.0	1.2D+1	.6L+0.5Lr		
	Crushing (psi)	PASS (96.8%)	43.8	1381.3	1.2D+1	.6L+0.5Lr		
LOAD LIST								
Туре	Left Magnitude	Right Magnitude	Load Start (f	t)	Load End (ft)		Load Type	Direction
Point (lbf)	3000	-	0		-		Live	Z
Point (lbf)	3000	-	0		-		Dead	Z

MATERIAL PR	OPERTIES						
FOOTING							
fc' (psi)	Ec (psi)	Density (lbf/ft ³)	Width (ft)		Length (ft)	Depth (in)	Volume (ft ³)
2500	2880952	145	2.5		2.5	10	5.21
CALCULATION VARIA	ABLES						
Bo (in)	Ф-Х	Φ-Υ					
0	0	0					
COLUMN							
Width (in)	Length (in)	Material	Offset (in)				
8	30	Concrete	0				
SOIL							
Bearing Strength (lbf/	ft ²) Density (lbf/ft ³)	Cohesion	Friction Angle		Depth (ft)	Rankine Coefficient (Kp)	
1500	140	0	30		0	3	
REBAR							
Bar Size #	# Bars Long	# Bars Short	fy (psi)		Es (psi)		
4	4	4	40000		2.9E+07		
PASS-FAIL							
		PASS/FAIL	MAGNITUDE	STRENGTH	LOAD	СОМВО	
Soil Be	aring Pressure (lbf/ft ²)	PASS (4.0%)	1440.0	1500.0	D	+L	
	One-Way Shear Y (lbf)	PASS (87.1%)	1890.0	14625.0	1.2D+1.6	6L+0.5Lr	
	Moment Y (lbf-ft)	PASS (47.1%)	2117.5	4000.0	1.2D+1.6	6L+0.5Lr	
	Crushing (psi)	PASS (96.2%)	52.5	1381.3	1.2D+1.6	5L+0.5Lr	
LOAD LIST							
Туре	Left Magnitude	Right Magnitude	e Load Start (f	t)	Load End (ft)	Load Type	Direction
Point (lbf)	4500	-	0		-	Live	Z
Point (lbf)	4500	-	0		-	Dead	Z

MATERIAL PR	OPERTIES							
FOOTING								
fc' (psi)	Ec (psi)	Density (lbf/ft ³)	Width (ft)		Length (ft)	De	epth (in)	Volume (ft ³)
2500	2880952	145	3		3		12	9
CALCULATION VARIA	ABLES							
Bo (in)	Ф-Х	Φ-Υ						
0	0	0						
COLUMN								
Width (in)	Length (in)	Material	Offset (in)					
8	36	Concrete	0					
SOIL								
Bearing Strength (lbf/	ft ²) Density (lbf/ft ³)	Cohesion	Friction Angle		Depth (ft)	Rankine O	Coefficient (Kp)	
1500	140	0	30		0		3	
REBAR								
Bar Size #	# Bars Long	# Bars Short	fy (psi)		Es (psi)			
4	5	5	40000		2.9E+07			
PASS-FAIL								
		PASS/FAIL	MAGNITUDE	STRENGTH	LOAD	сомво		
Soil Bea	aring Pressure (lbf/ft ²)	PASS (0.0%)	1500.0	1500.0	C)+L		
	One-Way Shear Y (lbf)	PASS (87.4%)	2902.8	22950.0	1.2D+1.	6L+0.5Lr		
	Moment Y (lbf-ft)	PASS (42.5%)	4310.2	7500.0	1.2D+1.	6L+0.5Lr		
	Crushing (psi)	PASS (95.2%)	66.0	1381.3	1.2D+1.	6L+0.5Lr		
LOAD LIST								
Туре	Left Magnitude	Right Magnitude	e Load Start (1	ft)	Load End (ft)		Load Type	Direction
Point (lbf)	7000	-	0		-		Live	Z
Point (lbf)	6500	-	0		-		Dead	Z

MATERIAL PRO	PERTIES							
FOOTING								
fc' (psi)	Ec (psi)	Density (lbf/ft ³)	Width (ft)		Length (ft)	Depth	(in)	Volume (ft ³)
2500	2880952	145	3.5		3.5	12	!	12.25
CALCULATION VARIAB	ILES							
Bo (in)	Ф-Х	Φ-Υ						
56	0	0						
COLUMN								
Width (in)	Length (in)	Material	Offset (in)					
5.5	5.5	Wood	0					
SOIL								
Bearing Strength (lbf/ft ²	²) Density (lbf/ft ³)	Cohesion	Friction Angle		Depth (ft)	Rankine Coef	ficient (Kp)	
1500	140	0	30		0	3		
REBAR								
Bar Size #	# Bars Long	# Bars Short	fy (psi)		Es (psi)			
4	5	5	40000		2.9E+07			
PASS-FAIL								
		PASS/FAIL	MAGNITUDE	STRENGTH	LOAD	СОМВО		
Soil Bear	ing Pressure (lbf/ft²)	PASS (2.0%)	1469.4	1500.0	C)+L		
Two-Way Sl	hear (Punching) (lbf)	PASS (59.7%)	28800.0	71400.0	1.2D+1.	6L+0.5Lr		
0	ne-Way Shear X (lbf)	PASS (75.0%)	6685.7	26775.0	1.2D+1.	6L+0.5Lr		
	Moment X (lbf-ft)	PASS (61.7%)	9516.1	24827.7	1.2D+1.	6L+0.5Lr		
0	ne-Way Shear Y (lbf)	PASS (75.0%)	6685.7	26775.0	1.2D+1.	6L+0.5Lr		
	Moment Y (lbf-ft)	PASS (61.7%)	9516.1	24827.7	1.2D+1.	6L+0.5Lr		
	Crushing (psi)	PASS (31.1%)	952.1	1381.3	1.2D+1.	6L+0.5Lr		
LOAD LIST								
Туре	Left Magnitude	Right Magnitude	e Load Start (f	t)	Load End (ft)	Loa	d Type	Direction
Point (lbf)	9000	-	0		-		Live	Z
Point (lbf)	9000	-	0		-		Live	Z

MATERIAL PRO	DPERTIES							
FOOTING								
fc' (psi)	Ec (psi)	Density (lbf/ft ³)	Width (ft)		Length (ft)	C	Pepth (in)	Volume (ft ³)
2500	2880952	145	4		4		12	16
CALCULATION VARIA	BLES							
Bo (in)	Ф-Х	Φ-Υ						
56	0	0						
COLUMN								
Width (in)	Length (in)	Material	Offset (in)					
5.5	5.5	Wood	0					
SOIL								
Bearing Strength (lbf/f	t ²) Density (lbf/ft ³)	Cohesion	Friction Angle		Depth (ft)	Rankine	Coefficient (Kp)	
1500	140	0	30		0		3	
REBAR								
Bar Size #	# Bars Long	# Bars Short	fy (psi)		Es (psi)			
4	6	6	40000		2.9E+07			
PASS-FAIL								
		PASS/FAIL	MAGNITUDE	STRENGTH	LOAD	СОМВО		
Soil Bea	ring Pressure (lbf/ft²)	PASS (0.0%)	1500.0	1500.0	1	D+L		
Two-Way S	Shear (Punching) (lbf)	PASS (52.9%)	33600.0	71400.0	1.2D+1	.6L+0.5Lr		
C	One-Way Shear X (lbf)	PASS (70.8%)	8925.0	30600.0	1.2D+1	.6L+0.5Lr		
	Moment X (lbf-ft)	PASS (55.7%)	13170.6	29752.9	1.2D+1	.6L+0.5Lr		
C	One-Way Shear Y (lbf)	PASS (70.8%)	8925.0	30600.0	1.2D+1	.6L+0.5Lr		
	Moment Y (lbf-ft)	PASS (55.7%)	13170.6	29752.9	1.2D+1	.6L+0.5Lr		
	Crushing (psi)	PASS (19.6%)	1110.7	1381.3	1.2D+1	.6L+0.5Lr		
LOAD LIST								
Туре	Left Magnitude	Right Magnitude	e Load Start (f	t)	Load End (ft)		Load Type	Direction
Point (lbf)	12000	-	0		-		Live	Z
Point (lbf)	12000	-	0		-		Dead	Z

MATERIAL PR	OPERTIES							
FOOTING								
fc' (psi)	Ec (psi)	Density (lbf/ft ³)	Width (ft)		Length (ft)	Depth	(in)	Volume (ft ³)
2500	2880952	145	4.5		4.5	14		23.62
CALCULATION VARIA	ABLES							
Bo (in)	Ф-Х	Φ-Υ						
66	0	0						
COLUMN								
Width (in)	Length (in)	Material	Offset (in)					
6	6	Wood	0					
SOIL								
Bearing Strength (lbf/	ft ²) Density (lbf/ft ³)	Cohesion	Friction Angle		Depth (ft)	Rankine Coeffi	cient (Kp)	
1500	140	0	30		0	3		
REBAR								
Bar Size #	# Bars Long	# Bars Short	fy (psi)		Es (psi)			
4	8	8	40000		2.9E+07			
PASS-FAIL								
		PASS/FAIL	MAGNITUDE	STRENGTH	LOAD	СОМВО		
Soil Be	aring Pressure (lbf/ft ²)	PASS (1.2%)	1481.5	1500.0	[D+L		
Two-Way	Shear (Punching) (lbf)	PASS (59.6%)	42000.0	103950.0	1.2D+1	.6L+0.5Lr		
	One-Way Shear X (lbf)	PASS (75.3%)	10500.0	42525.0	1.2D+1	.6L+0.5Lr		
	Moment X (lbf-ft)	PASS (62.0%)	18666.7	49061.4	1.2D+1	.6L+0.5Lr		
	One-Way Shear Y (lbf)	PASS (75.3%)	10500.0	42525.0	1.2D+1	.6L+0.5Lr		
	Moment Y (lbf-ft)	PASS (62.0%)	18666.7	49061.4	1.2D+1	.6L+0.5Lr		
	Crushing (psi)	PASS (15.5%)	1166.7	1381.3	1.2D+1	.6L+0.5Lr		
LOAD LIST								
Туре	Left Magnitude	Right Magnitude	e Load Start (f	t)	Load End (ft)	Load	І Туре	Direction
Point (lbf)	15000	-	0		-	L	ive	Z
Point (lbf)	15000	-	0		-	D	ead	Z

PERTIES							
Ec (psi)	Density (lbf/ft ³)	Width (ft)		Length (ft)	D	epth (in)	Volume (ft ³)
2880952	145	5		5		14	29.17
_ES							
Ф-Х	Φ-Υ						
0	0						
Length (in)	Material	Offset (in)					
7	Wood	0					
Density (lbf/ft ³)	Cohesion	Friction Angle		Depth (ft)	Rankine	Coefficient (Kp)	
140	0	30		0		3	
# Bars Long	# Bars Short	fy (psi)		Es (psi)			
9	9	40000		2.9E+07			
	PASS/FAIL	MAGNITUDE	STRENGTH	LOAD	сомво		
ng Pressure (lbf/ft²)	PASS (4.0%)	1440.0	1500.0	D)+L		
ear (Punching) (lbf)	PASS (54.3%)	50400.0	110250.0	1.2D+1.	6L+0.5Lr		
e-Way Shear X (lbf)	PASS (71.6%)	13440.0	47250.0	1.2D+1.	6L+0.5Lr		
Moment X (lbf-ft)	PASS (55.5%)	24578.8	55175.3	1.2D+1.	6L+0.5Lr		
e-Way Shear Y (lbf)	PASS (71.6%)	13440.0	47250.0	1.2D+1.	6L+0.5Lr		
Moment Y (lbf-ft)	PASS (55.5%)	24578.8	55175.3	1.2D+1.	6L+0.5Lr		
Crushing (psi)	PASS (25.5%)	1028.6	1381.3	1.2D+1.	6L+0.5Lr		
Left Magnitude	Right Magnitude	e Load Start (f	t)	Load End (ft)		Load Type	Direction
18000	-	0		-		Live	Z
18000	-	0		-		Dead	Z
	PERTIES Ec (psi) 2880952 ES $\Phi-X$ 0 Length (in) 7 Density (lbf/ft ³) 140 # Bars Long 9 mg Pressure (lbf/ft ²) ear (Punching) (lbf) ee-Way Shear X (lbf) Moment X (lbf-ft) Moment X (lbf-ft) crushing (psi) Left Magnitude 18000 18000	PERTIES Ec (psi) Density (lbf/ft³) 2880952 145 ES -X Φ-Y 0 0 0 Length (in) Material 7 Yood - - Density (lbf/ft³) Cohesion - 140 0 - # Bars Long # Bars Short 9 9 9 9 PASS/FAIL - - ng Pressure (lbf/ft²) PASS (4.0%) - ear (Punching) (lbf) PASS (54.3%) - ee-Way Shear X (lbf) PASS (55.5%) - Moment X (lbf-ft) PASS (55.5%) - Crushing (psi) PASS (25.5%) - Left Magnitude Right Magnitude 18000 18000 - -	PERTIES Ec (psi) Density (lbf/ft³) Width (ft) 2880952 145 5 D-X D-Y 0 0 0 0 0 0 Length (in) Material Offset (in) 7 Vood 0 0 0 Density (lbf/ft³) Cohesion Friction Angle 140 0 30 30 # Bars Long # Bars Short fy (psi) 9 9 40000 PASS/FAIL MAGNITUDE Pass (4.0%) 1440.0 14	PERTIES Ec (psi) Density (lbf/ft ³) Width (ft) 2880952 145 5 ES O O O Length (in) Material Offset (in) O 7 Wood O O Density (lbf/ft ³) Cohesion Friction Angle 140 0 30 # Bars Long # Bars Short fy (psi) 9 9 40000 PASS/FAIL MAGNITUDE STRENGTH ng Pressure (lbf/ft ²) PASS (4.0%) 1440.0 1500.0 ear (Punching) (lbf) PASS (54.3%) 50400.0 110250.0 ee-Way Shear X (lbf) PASS (55.5%) 24578.8 55175.3 moment X (lbf-ft) PASS (71.6%) 13440.0 47250.0 Moment Y (lbf-ft) PASS (55.5%) 24578.8 55175.3 Crushing (psi) PASS (25.5%) 1028.6 1381.3 Left Magnitude Right Magnitude Load Start (ft) 18000 - 0	PERTIES Ec (psi) Density (lbf/ft³) Width (ft) Length (ft) 2880952 145 5 5 Φ-X Φ-Y 0 0 0 0 0 0 Length (in) Material Offset (in) 7 7 Wood 0 0 Density (lbf/ft³) Cohesion Friction Angle Depth (ft) 140 0 30 0 # Bars Long # Bars Short fy (psi) Es (psi) 9 9 40000 2.9E+07 PASS/FAIL MAGNITUDE STRENGTH LOAD ng Pressure (lbf/ft²) PASS (54.3%) 50400.0 110250.0 1.2D+1. eeway Shear X (lbf) PASS (55.5%) 24578.8 55175.3 1.2D+1. Moment X (lbf-ft) PASS (55.5%) 24578.8 55175.3 1.2D+1. Moment Y (lbf) PASS (55.5%) 24578.8 55175.3 1.2D+1. Moment Y (lbf-ft) PASS (55.5%) 24578.8	PERTIES Ec (psi) Density (lbf/ft ³) Width (ft) Length (ft) D 2880952 145 5 5 5 Ø-X Ø-Y 0 0 0 0 0 0 0 0 0 Length (in) Material Offset (in) T Wood 0 Density (lbf/ft ³) Cohesion Friction Angle Depth (ft) Rankine (ft) 140 0 30 0 0 0 # Bars Long # Bars Short fy (psi) Es (psi) 9 9 9 40000 2.9E+07 PASS/FAIL MAGNITUDE STRENGTH LOAD COMBO D+L ear (Punching) (lbf) PASS (54.3%) 50400.0 110250.0 1.2D+1.6L+0.5Lr moment X (lbf-ft) PASS (71.6%) 13440.0 47250.0 1.2D+1.6L+0.5Lr Moment Y (lbf) PASS (55.5%) 24578.8 55175.3 1.2D+1.6L+0.5Lr Moment Y (lbf-ft) PASS (55.5%) 24578.8 55	PERTIES Density (lbf/ft ³) Width (ft) Length (ft) Depth (in) 2880952 145 5 5 14 2880952 145 5 5 14 ES 0 0 0 0 Length (in) Material Offset (in) 7 Vood 0 Density (lbf/ft ³) Cohesion Friction Angle Depth (ft) Rankine Coefficient (Kp) 140 0 30 0 3 # Bars Long # Bars Short fy (psi) Es (psi) 2.9E+07 PASS/FAIL MAGNITUDE STRENGTH LOAD COMBO ng Pressure (lbf/ft ²) PASS (54.3%) 50400.0 110250.0 1.2D+1.6L+0.5Lr e-Way Shear X (lbf) PASS (55.5%) 24578.8 55175.3 1.2D+1.6L+0.5Lr Moment X (lbf-ft) PASS (55.5%) 24578.8 55175.3 1.2D+1.6L+0.5Lr Moment Y (lbf.ft) PASS (55.5%) 24578.8 55175.3 1.2D+1.6L+0.5Lr Crushing (psi) PASS (55.5%) 24578.8

PROJECT: Foundation 1500psf

2018 International Building Code

Supplementary Calculations for the following:

- ~ Hold-down anchor design/calculations
- ~ Hand-rail calculations (wood/concrete)
- ~ Balloon framed stud design
- ~ Ledger Calculations/Data
- Typical Posts

Hold-down anchor design calculations

SIMPSON

Strong-1

Anchor Designer™ Software Version 2.5.6582.0

JUCI	Engineer:	MRT
	Project:	Hold-down Anchors
	Address:	
	Phone:	

Company:

E-mail:

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General Design method:ACI 318-14 Units: Imperial units

Anchor Information:

 $\begin{array}{l} \mbox{Anchor type: Cast-in-place} \\ \mbox{Material: AB_H} \\ \mbox{Diameter (inch): 0.625} \\ \mbox{Effective Embedment depth, h_{ef} (inch): 4.000} \\ \mbox{Anchor category: -} \\ \mbox{Anchor ductility: Yes} \\ \mbox{h_{min}$ (inch): 6.13} \\ \mbox{Cmin (inch): 1.38} \\ \mbox{S_{min}$ (inch): 2.50} \end{array}$

Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 0.9D + 1.0E Seismic design: Yes Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied Ductility section for shear: 17.2.3.5.2 not applicable Ω_0 factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes

<Figure 1>

Project description: Location: Fastening description:

5/8" DIA Anchor

Date:

Page:

5/3/2018

1/4

Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 18.00 State: Cracked Compressive strength, f_c (psi): 2500 $\Psi_{c,V}$: 1.0 Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Ignore 6do requirement: Yes Build-up grout pad: No

L120 Engineering & Design

SEE ID

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com

Company:	L120 Engineering & Design	Date:	5/3/2018
Engineer:	MRT	Page:	2/4
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB5H (5/8"Ø)

SON	Anchor Docignor TM	Company:	L120 Engineering & Design	Date:	5/3/2018
3011	Tie Software	Engineer:	MRT	Page:	3/4
p-Tie		Project:	Hold-down Anchors		
Version 2.5.6582.0	Address:				
	Phone:				
		E-mail:			

3. Resulting Anchor Forces

1010

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2 + (V_{uay})^2}$ (lb)
1	2925.0	0.0	0.0	0.0
Sum	2925.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 2925

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
27120	0.75	20340

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.4.2)

$N_b = k_c \lambda_a \sqrt{f'_c}$	h _{ef} ^{1.5} (Eq. 17.4.2	2.2a)							
<i>k</i> _c	λ_a	f'c (psi)	h _{ef} (in)	N₂ (lb)					
24.0	1.00	2500	4.000	9600					
$0.75\phi N_{cb}=0$).75φ (A _{Nc} / A _{Ncc}) $\Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N$	l _b (Sec. 17.3.1	& Eq. 17.4.2.1a	ı)				
A_{Nc} (in ²)	A_{Nco} (in ²	c _{a,min} (in)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	ϕ	0.75 <i>¢Ncb</i> (lb)	
103.00	144.00	4.00	0.900	1.00	1.000	9600	0.75	3476	

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

$\Psi_{c,P}$	A _{brg} (in ²)	f'c (psi)	ϕ	0.75 <i>¢Npn</i> (lb)
1.0	2.10	2500	0.70	22029

Company:	L120 Engineering & Design	Date:	5/3/2018
Engineer:	MRT	Page:	4/4
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2925	20340	0.14	Pass
Concrete breakout	2925	3476	0.84	Pass (Governs)
Pullout	2925	22029	0.13	Pass

PAB5H (5/8"Ø) with hef = 4.000 inch meets the selected design criteria.

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, Nua (lb)	1.2 x Nominal Strength, Nn (lb)	Ratio	
Steel	2925	32544	9.0 %	
Concrete	Nominal Strength, Nn (lb)	Nominal Strength, Nn (lb)	Ratio	
Concrete breakout	2925	6180	47.3 %	Governs
Pullout	2925	41960	7.0 %	

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) is not satisfied since steel ratio does not govern.

12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.

- Brittle failure governs for tension. Governing anchor failure mode is brittle failure. Attachment shall be designed to satisfy the requirements of ACI 318-14 Section 17.2.3.4.3 for structures assigned to Seismic Design Category C, D, E, or F when the component of the strength level earthquake force applied to anchors exceeds 20 percent of the total factored anchor force associated with the same load combination. In case when ACI 318-14 Sections 17.2.3.4.3 (a)(iii) to (vi), (b), (c) or (d) is satisfied for tension loading, select appropriate checkbox from Inputs tab to disable this message. Alternatively, Ω 0 factor can be entered to satisfy ACI 318-14 Section 17.2.3.4.3(d) to increase the earthquake portion of the loads as required.

- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied – designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

SIMPSON

Strong-1

Anchor Designer™ Software Version 2.5.6582.0

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	1/4
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place Material: AB Diameter (inch): 0.750 Effective Embedment depth, h_{ef} (inch): 12.000 Anchor category: -Anchor ductility: Yes h_{min} (inch): 14.25 C_{min} (inch): 1.63 S_{min} (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 0.9D + 1.0ESeismic design: Yes Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied Ductility section for shear: 17.2.3.5.2 not applicable Ω_0 factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes

<Figure 1>

Project description: Location: Fastening description:

3/4" DIA Anchor

Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 18.00 State: Cracked Compressive strength, f^{*}_c (psi): 2500 $\Psi_{c,V}$: 1.0 Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: No Ignore 6do requirement: Yes Build-up grout pad: No

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	2/4
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB6 (3/4"Ø)

PSON	Anchor Docignor ^{IM}	Company:	L120 Engineering & Design	Date:	1/14/2018
	Software Version 2.5.6582.0	Engineer:	MRT	Page:	3/4
ng-Tie		Project:	Hold-down Anchors		
		Address:			
		Phone:			
		E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2 + (V_{uay})^2}$ (lb)
1	13050.0	0.0	0.0	0.0
Sum	13050.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 0 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
19370	0.75	14528

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

 $0.75 \phi N_{Pn} = 0.75 \phi \Psi_{c,P} N_P = 0.75 \phi \Psi_{c,P} 8 A_{brg} f_c$ (Sec. 17.3.1, Eq. 17.4.3.1 & 17.4.3.4)

$\Psi_{c,P}$	A _{brg} (in ²)	f'c (psi)	ϕ	0.75 <i>øNpn</i> (lb)
1.0	3.53	2500	0.70	37107

SIMPSON Strong-Tie Version 2.5.6582.0

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	4/4
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

 $0.75\phi N_{sb} = 0.75\phi \{ (1 + c_{a2}/c_{a1})/4 \} (160c_{a1}\sqrt{A_{brg}})\lambda \sqrt{f_c} \text{ (Sec. 17.3.1 \& Eq. 17.4.4.1)}$

Ca1 (in)	<i>c</i> _{a2} (in)	A _{brg} (in ²)	λa	f'c (psi)	ϕ	0.75 <i>¢Nsbg</i> (lb)
4.00	6.00	3.53	1.00	2500	0.75	21149

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	13050	14528	0.90	Pass (Governs)
Pullout	13050	37107	0.35	Pass
Side-face blowout	13050	21149	0.62	Pass

PAB6 (3/4"Ø) with hef = 12.000 inch meets the selected design criteria.

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, N _{ua} (lb)	1.2 x Nominal Strength, Nn (lb)	Ratio	
Steel	13050	23244	56.1%	Governs
Concrete	Nominal Strength, Nn (lb)	Nominal Strength, Nn (lb)	Ratio	
Concrete Pullout	Nominal Strength, Nn (lb) 13050	Nominal Strength, Nn (lb) 70680	Ratio 18.5%	

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) satisfied since steel ratio governs and the steel element is ductile.

12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.

- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.

- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied – designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

SIMPSON

Strong-1

Anchor Designer™ Software

Version 2.5.6582.0

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	1/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place Material: AB H Diameter (inch): 0.875 Effective Embedment depth, hef (inch): 12.000 Anchor category: -Anchor ductility: Yes h_{min} (inch): 14.38 Cmin (inch): 1.75 Smin (inch): 3.50

Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 0.9D + 1.0E Seismic design: Yes Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied Ductility section for shear: 17.2.3.5.2 not applicable Ω_0 factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes

<Figure 1>

Project description: Location: Fastening description:

7/8" DIA Anchor

Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 18.00 State: Cracked Compressive strength, f'c (psi): 2500 Ψ_{c,V}: 1.0 Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: No Ignore 6do requirement: Yes Build-up grout pad: No

8008

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	2/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB7H (7/8"Ø)

PSON	Anchor Designer TM	Company:	L120 Engineering & Design	Date:	1/14/2018
	Software Version 2.5.6582.0	Engineer:	MRT	Page:	3/5
ng-Tie		Project:	Hold-down Anchors		
		Address:			
		Phone:			
		E-mail:			

3. Resulting Anchor Forces

31

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2 + (V_{uay})^2}$ (lb)
1	18000.0	0.0	0.0	0.0
Sum	18000.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 0 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in x-axis, e_{Ny} (incl.): 0.00 Eccentricity of resultant tension forces in y-axis, e_{Ny} (incl.): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (Ib)
55440	0.75	41580

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

 $0.75 \phi N_{Pn} = 0.75 \phi \Psi_{c,P} N_P = 0.75 \phi \Psi_{c,P} 8 A_{brg} f_c$ (Sec. 17.3.1, Eq. 17.4.3.1 & 17.4.3.4)

$\Psi_{c,P}$	A _{brg} (in ²)	f' _c (psi)	ϕ	0.75 <i>¢N_{pn}</i> (lb)
1.0	4.07	2500	0.70	42683

SIMPSONAnchor Designer™Company:
Engineer:Strong:TieSoftware
Version 2.5.6582.0Project:
Address:

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	4/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

 $0.75\phi N_{sb} = 0.75\phi \{ (1 + c_{a2}/c_{a1})/4 \} (160c_{a1}\sqrt{A_{brg}}) \lambda \sqrt{f_c} \text{ (Sec. 17.3.1 \& Eq. 17.4.4.1)}$

Ca1 (in)	<i>c</i> _{a2} (in)	A_{brg} (in ²)	λa	<i>f'c</i> (psi)	ϕ	0.75 <i>¢Nsbg</i> (lb)
4.00	6.00	4.07	1.00	2500	0.75	22682

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	18000	41580	0.43	Pass
Pullout	18000	42683	0.42	Pass
Side-face blowout	18000	22682	0.79	Pass (Governs)

PAB7H (7/8"Ø) with hef = 12.000 inch meets the selected design criteria.

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, N _{ua} (lb)	1.2 x Nominal Strength, Nn (lb)	Ratio	
Steel	18000	66528	27.1%	
Concrete	Nominal Strangth N. (lh)	Nominal Strangth N. (Ib)	Patia	
Concrete			Ralio	
Pullout	18000	81300	22.1%	
Side-face blowout	18000	40324	44.6%	Governs

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) is not satisfied since steel ratio does not govern.

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	5/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.

- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.

- Brittle failure governs for tension. Governing anchor failure mode is brittle failure. Attachment shall be designed to satisfy the requirements of ACI 318-14 Section 17.2.3.4.3 for structures assigned to Seismic Design Category C, D, E, or F when the component of the strength level earthquake force applied to anchors exceeds 20 percent of the total factored anchor force associated with the same load combination. In case when ACI 318-14 Sections 17.2.3.4.3 (a)(iii) to (vi), (b), (c) or (d) is satisfied for tension loading, select appropriate checkbox from Inputs tab to disable this message. Alternatively, Ω 0 factor can be entered to satisfy ACI 318-14 Section 17.2.3.4.3(d) to increase the earthquake portion of the loads as required.

- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied – designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

SIMPSON

Strong-1

Anchor Designer™ Software

Version 2.5.6582.0

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	1/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place Material: AB_H Diameter (inch): 1.000 Effective Embedment depth, h_{ef} (inch): 15.000 Anchor category: -Anchor ductility: Yes h_{min} (inch): 17.63 C_{min} (inch): 1.88 S_{min} (inch): 4.00

Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 0.9D + 1.0ESeismic design: Yes Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied Ductility section for shear: 17.2.3.5.2 not applicable Ω_0 factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes

<Figure 1>

Project description: Location: Fastening description:

1" DIA Anchor

Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 18.00 State: Cracked Compressive strength, f^{*} (psi): 2500 $\Psi_{c,V}$: 1.0 Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: No Ignore 6do requirement: Yes Build-up grout pad: No

2000 lb

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	2/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB8H (1"Ø)

PSON	Anchor Docignor TM	Company:	L120 Engineering & Design	Date:	1/14/2018
	Software	Engineer:	MRT	Page:	3/5
ng-Tie		Project:	Hold-down Anchors		
Version 2.5.6582.0	Address:				
		Phone:			
		E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2 + (V_{uay})^2}$ (lb)
1	22500.0	0.0	0.0	0.0
Sum	22500.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 0 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
72720	0.75	54540

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

 $0.75 \phi N_{Pn} = 0.75 \phi \Psi_{c,P} N_P = 0.75 \phi \Psi_{c,P} 8 A_{brg} f_c$ (Sec. 17.3.1, Eq. 17.4.3.1 & 17.4.3.4)

$\Psi_{c,P}$	A _{brg} (in ²)	f' _c (psi)	ϕ	0.75 <i>¢N_{pn}</i> (lb)
1.0	5.15	2500	0.70	54117

SIMPSONAnchor Designer™C.Strong-TieSoftwarePrVersion 2.5.6582.0Ad

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	4/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

 $0.75\phi N_{sb} = 0.75\phi \{(1+c_{a2}/c_{a1})/4\}(160c_{a1}\sqrt{A_{brg}})\lambda\sqrt{f'_c}$ (Sec. 17.3.1 & Eq. 17.4.4.1)

Ca1 (in)	<i>c</i> _{a2} (in)	A _{brg} (in ²)	λa	f'₀ (psi)	ϕ	0.75 <i>¢N_{sbg}</i> (lb)
4.00	6.00	5.15	1.00	2500	0.75	25540

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	22500	54540	0.41	Pass
Pullout	22500	54117	0.42	Pass
Side-face blowout	22500	25540	0.88	Pass (Governs)

PAB8H (1"Ø) with hef = 15.000 inch meets the selected design criteria.

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, N _{ua} (lb)	1.2 x Nominal Strength, N₁ (lb)	Ratio	
Steel	22500	87264	25.8%	
Concrete	Nominal Strength, Nn (lb)	Nominal Strength, Nn (lb)	Ratio	
Pullout	22500	103080	21.8%	
Side-face blowout	22500	45405	49.6%	Governs

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) is not satisfied since steel ratio does not govern.

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	5/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.

- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.

- Brittle failure governs for tension. Governing anchor failure mode is brittle failure. Attachment shall be designed to satisfy the requirements of ACI 318-14 Section 17.2.3.4.3 for structures assigned to Seismic Design Category C, D, E, or F when the component of the strength level earthquake force applied to anchors exceeds 20 percent of the total factored anchor force associated with the same load combination. In case when ACI 318-14 Sections 17.2.3.4.3 (a)(iii) to (vi), (b), (c) or (d) is satisfied for tension loading, select appropriate checkbox from Inputs tab to disable this message. Alternatively, Ω 0 factor can be entered to satisfy ACI 318-14 Section 17.2.3.4.3(d) to increase the earthquake portion of the loads as required.

- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied – designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

Strong-I

Anchor Designer™ Software Ve

rsion	2.5.6582.0	
	2.0.0002.0	

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	1/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place Material: AB Diameter (inch): 1.125 Effective Embedment depth, hef (inch): 15.000 Anchor category: -Anchor ductility: Yes hmin (inch): 17.75 Cmin (inch): 2.13 Smin (inch): 4.50

Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 0.9D + 1.0E Seismic design: Yes Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied Ductility section for shear: 17.2.3.5.2 not applicable Ω_0 factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes

<Figure 1>

Project description: Location: Fastening description:

1 1/8" DIA Anchor

Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 18.00 State: Cracked Compressive strength, f'c (psi): 2500 Ψ_{c,V}: 1.0 Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: No Ignore 6do requirement: Yes Build-up grout pad: No

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	2/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB9 (1 1/8"Ø)

PSON	Anchor Docignor ^{IM}	Company:	L120 Engineering & Design	Date:	1/14/2018
		Engineer:	MRT	Page:	3/5
ng-Tie	SOITWARE Version 2.5.6582.0	Project:	Hold-down Anchors		
		Address:			
		Phone:			
		E-mail:			

3. Resulting Anchor Forces

31

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2 + (V_{uay})^2}$ (lb)
1	27900.0	0.0	0.0	0.0
Sum	27900.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 0 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e_{Ny} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e_{Ny} (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
44255	0.75	33191

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

 $0.75 \phi N_{Pn} = 0.75 \phi \Psi_{c,P} N_P = 0.75 \phi \Psi_{c,P} 8 A_{brg} f_c$ (Sec. 17.3.1, Eq. 17.4.3.1 & 17.4.3.4)

Ψc,P	A _{brg} (in ²)	f' _c (psi)	ϕ	0.75 <i>¢N_{pn}</i> (lb)
1.0	6.37	2500	0.70	66885
SON	Anchor Designer TM	Company:	L120 Engineering & Design	
-------	-------------------------------	-----------	---------------------------	
		Engineer:	MRT	
g-Tie	Sonware	Project:	Hold-down Anchors	
0	Version 2.5.6582.0	Address:		
		Phone:		

E-mail:

Date:

Page:

1/14/2018

4/5

7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

 $0.75\phi N_{sb} = 0.75\phi \{(1+c_{a2}/c_{a1})/4\}(160c_{a1}\sqrt{A_{brg}})\lambda\sqrt{f'_c}$ (Sec. 17.3.1 & Eq. 17.4.4.1)

<i>c</i> a1 (in)	<i>c</i> _{a2} (in)	A _{brg} (in ²)	λa	f′c (psi)	ϕ	0.75 <i>¢Nsbg</i> (lb)
4.00	6.00	6.37	1.00	2500	0.75	28394

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	27900	33191	0.84	Pass
Pullout	27900	66885	0.42	Pass
Side-face blowout	27900	28394	0.98	Pass (Governs)

PAB9 (1 1/8"Ø) with hef = 15.000 inch meets the selected design criteria.

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, N _{ua} (lb)	1.2 x Nominal Strength, Nn (lb)	Ratio	
Steel	27900	53106	52.5%	
Concrete	Nominal Strength, Nn (lb)	Nominal Strength, Nn (lb)	Ratio	
Pullout	27900	127400	21.9%	
Side-face blowout	27900	50478	55.3%	Governs

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) is not satisfied since steel ratio does not govern.

Company:	L120 Engineering & Design Date: 1/14/20		
Engineer:	MRT	Page:	5/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.

- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.

- Brittle failure governs for tension. Governing anchor failure mode is brittle failure. Attachment shall be designed to satisfy the requirements of ACI 318-14 Section 17.2.3.4.3 for structures assigned to Seismic Design Category C, D, E, or F when the component of the strength level earthquake force applied to anchors exceeds 20 percent of the total factored anchor force associated with the same load combination. In case when ACI 318-14 Sections 17.2.3.4.3 (a)(iii) to (vi), (b), (c) or (d) is satisfied for tension loading, select appropriate checkbox from Inputs tab to disable this message. Alternatively, Ω 0 factor can be entered to satisfy ACI 318-14 Section 17.2.3.4.3(d) to increase the earthquake portion of the loads as required.

- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied – designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

SIMPSON

Strong-1

Anchor Designer™ Software

Version 2.5.6582.0

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	1/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place Material: AB Diameter (inch): 1.250 Effective Embedment depth, hef (inch): 15.000 Anchor category: -Anchor ductility: Yes h_{min} (inch): 18.00 Cmin (inch): 2.25 Smin (inch): 5.00

Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 0.9D + 1.0E Seismic design: Yes Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied Ductility section for shear: 17.2.3.5.2 not applicable Ω_0 factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes

<Figure 1>

Project description: Location: Fastening description:

1 1/4" DIA Anchor

Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 18.00 State: Cracked Compressive strength, f'c (psi): 2500 Ψ_{c,V}: 1.0 Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: No Ignore 6do requirement: Yes Build-up grout pad: No

1000

Anchor Designer™ Software Version 2.5.6582.0

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	2/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB10 (1 1/4"Ø)

PSON	Anchor Dosignor™	Company:	L120 Engineering & Design	Date:	1/14/2018
		Engineer:	MRT	Page:	3/5
ng-Tie	Version 2.5.6582.0	Project:	Hold-down Anchors		
0		Address:			
•		Phone:			
		E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2 + (V_{uay})^2}$ (lb)
1	31500.0	0.0	0.0	0.0
Sum	31500.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 0 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
56200	0.75	42150

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

 $0.75 \phi N_{Pn} = 0.75 \phi \Psi_{c,P} N_P = 0.75 \phi \Psi_{c,P} 8 A_{brg} f_c$ (Sec. 17.3.1, Eq. 17.4.3.1 & 17.4.3.4)

Ψc,P	A _{brg} (in ²)	f' _c (psi)	ϕ	0.75 <i>¢N_{pn}</i> (lb)
1.0	8.39	2500	0.70	88137

SIMPSON Anchor Designer™ Software Version 2.5.6582.0

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	4/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

 $0.75\phi N_{sb} = 0.75\phi \{(1+c_{a2}/c_{a1})/4\}(160c_{a1}\sqrt{A_{brg}})\lambda\sqrt{f'_c}$ (Sec. 17.3.1 & Eq. 17.4.4.1)

ca₁ (in)	<i>c</i> _{a2} (in)	A _{brg} (in ²)	λa	<i>f'c</i> (psi)	ϕ	0.75 <i>¢Nsbg</i> (lb)
4.00	6.00	8.39	1.00	2500	0.75	32594

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	31500	42150	0.75	Pass
Pullout	31500	88137	0.36	Pass
Side-face blowout	31500	32594	0.97	Pass (Governs)

PAB10 (1 1/4"Ø) with hef = 15.000 inch meets the selected design criteria.

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, N _{ua} (lb)	1.2 x Nominal Strength, N_n (Ib)	Ratio	
Steel	31500	67440	46.7%	
Concrete	Nominal Strength, Nn (lb)	Nominal Strength, Nn (lb)	Ratio	
Pullout	31500	167880	18.8%	
Side-face blowout	31500	57945	54.4%	Governs

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) is not satisfied since steel ratio does not govern.

Company:	L120 Engineering & Design	Date:	1/14/2018		
Engineer:	MRT	Page:	5/5		
Project:	Hold-down Anchors				
Address:					
Phone:					
E-mail:					

12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.

- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.

- Brittle failure governs for tension. Governing anchor failure mode is brittle failure. Attachment shall be designed to satisfy the requirements of ACI 318-14 Section 17.2.3.4.3 for structures assigned to Seismic Design Category C, D, E, or F when the component of the strength level earthquake force applied to anchors exceeds 20 percent of the total factored anchor force associated with the same load combination. In case when ACI 318-14 Sections 17.2.3.4.3 (a)(iii) to (vi), (b), (c) or (d) is satisfied for tension loading, select appropriate checkbox from Inputs tab to disable this message. Alternatively, Ω 0 factor can be entered to satisfy ACI 318-14 Section 17.2.3.4.3(d) to increase the earthquake portion of the loads as required.

- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied – designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

Hand-rail Calculations

LONGITUDE	PROJECT SUBJECTGuardRai	PROJECT NO. SHEET NO.
ONE TWENTY [®] ENGINEERING & DESIGN	BY	DATE _/ /
Mounting Plate Design: Apply Forces: $Mx = 9788$ $My = 900 \pi$ T = 200 # V = 25 #	; #" #"	Plate Thickness = $1/2$. Standoff = $1/2$. Hole O.D. = $3/g^{*}$ \uparrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow
Try 1/2" thick Plate Plate Bending Stress: fbx = = fby	= Mx/2/Sx = 9788/2/(1/4 x 5" x (1/2)^2) = 15,660 psi = My/Sy = 900/(1/4 x 7" x (1/2)^2) = 2,057 psi	$\begin{array}{c c} \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet \\ \hline \hline \end{array} & 5' & \longrightarrow 2'' & - \\ \hline \hline \end{array} & 7'' & - \end{array}$
For Plate 6061-T6 Fb =3 = 2	5 ksi / 1.65 21,200 psi > fb O.K.	
Plate Combined Stress fbx/Fb + fby/Fb = 0.83 <	1.0 O.K.	

Page 1 of 1	Fastenal Product Standard	REV-00
Date: January 11, 2012	FASTENAL	LAG.HDG

Hex Lag Screws, Hot Dipped Galvanized The information below lists the required dimensional, chemical and physical characteristics of the products in this purchase order. If the order received does not meet these requirements, it may result in a supplier corrective action request, which could jeopardize your status as an approved vendor. Unless otherwise specified, all referenced consensus standards must be adhered to in their entirety.

		E	F	=	(G	F	1
Diameter	Body Diameter		Width Across Flats		Width Across Corners		Height	
	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.
10	.199	.178	.281	.271	.323	.309	.140	.110
1/4	.260	.237	.438	.425	.505	.484	.188	.150
5/16	.324	.298	.500	.484	.577	.552	.235	.195
3/8	.388	.360	.562	.544	.650	.620	.268	.226
7/16	.452	.421	.625	.603	.722	.687	.316	.272
1/2	.515	.482	.750	.725	.866	.826	.364	.302
5/8	.642	.605	.938	.906	1.083	1.033	.444	.378
3/4	.768	.729	1.125	1.088	1.299	1.240	.524	.455
7/8	.895	.852	1.312	1.269	1.516	1.447	.604	.531
1	1.022	.976	1.500	1.450	1.732	1.653	.700	.591
1 1/8	1.149	1.098	1.688	1.631	1.949	1.859	.780	.658
1 1/4	1.277	1.223	1.875	1.812	2.165	2.066	.876	.749

Dimensions above are prior to coating

Specification Requirements:

•	Dimensions:	ASME B18.2.1.
٠	Material:	Per ASTM A307, Grade A
•	Thread requirements:	The minimum thread length must be equal to one half the nominal Screw length plus $\frac{1}{2}$, or 6 inch, whichever is shorter. Screws too short to conform to this formula must be threaded as close to the head
•	Coating:	as possible. Hot Dip Zinc per ASTM F2329 or in accordance with Class C of ASTM A153 and Class D for 3/8" diameter and less.

		PROJECT NO.	SHEET NO.
	PROJECT _		
LONGITUDE	SUBJECT _		
ONE TWENTY [®] ENGINEERING & DESIGN	BY	DATE _	/ /

Table 2.3.2	Frequently Used Load Duration Factors, C_{D^1}			
Load Duration	Cp	Typical Design Loads		
Permanent	0.9	Dead Load		

Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact ²	2.0	Impact Load

1. Load duration factors shall not apply to reference modulus of elasticity, E, reference modulus of elasticity for beam and column stability, $E_{\rm man}$, no to reference compression perpendicular to grain design values, F_{\perp} , based on a deformation limit.

 Load duration factors greater than 1.6 shall not apply to structural members pressure-treated with water-borne preservatives (see Reference 30), or fire retardant chemicals. The impact load duration factor shall not apply to connections.

2.3.3 Temperature Factor, Ct

Reference design values shall be multiplied by the temperature factors, C_t , in Table 2.3.3 for structural members that will experience sustained exposure to elevated temperatures up to 150°F (see Appendix C).

2.3.4 Fire Retardant Treatment

The effects of fire retardant chemical treatment on strength shall be accounted for in the design. Adjusted design values, including adjusted connection design values, for lumber and structural glued laminated timber pressure-treated with fire retardant chemicals shall be obtained from the company providing the treatment and redrying service. Load duration factors greater than 1.6 shall not apply to structural members pressure-treated with fire retardant chemicals (see Table 2.3.2).

2.3.5 Format Conversion Factor, K_F (LRFD Only)

For LRFD, reference design values shall be multiplied by the format conversion factor, K_F , specified in Table 2.3.5. The format conversion factor, K_F , shall not apply for designs in accordance with ASD methods specified herein.

2.3.6 Resistance Factor, ϕ (LRFD Only)

For LRFD, reference design values shall be multiplied by the resistance factor, ϕ , specified in Table 2.3.6. The resistance factor, ϕ , shall not apply for designs in accordance with ASD methods specified herein.

2.3.7 Time Effect Factor, λ (LRFD Only)

For LRFD, reference design values shall be multiplied by the time effect factor, λ , specified in Appendix N.3.3. The time effect factor, λ , shall not apply for designs in accordance with ASD methods specified herein.

fable 2.3.3	Temperature Fac	ctor, Ct							
Reference Design	In-Service Moisture	Ct							
values	Conditions ¹	T≤100°F	100°F <t≤125°f< th=""><th>125°F<t≤150°f< th=""></t≤150°f<></th></t≤125°f<>	125°F <t≤150°f< th=""></t≤150°f<>					
Ft, E, Emin	Wet or Dry	1.0	0.9	0.9					
	Dry	1.0	0.8	0.7					
F_b , F_v , F_c , and $F_{c\perp}$	Wet	1.0	0.7	0.5					

 Wet and dry service conditions for sawn lumber, structural glued laminated timber, prefabricated wood I-joists, structural composite lumber, wood structural panels and cross-laminated timber are specified in 4.1.4, 5.1.4, 7.1.4, 8.1.4, 9.3.3, and 10.1.5 respectively. 2

DESIGN VALUES FOR STRUCTURAL MEMBERS

	PROJECT NO.	SHEET NO.
PROJECT		
SUBJECT		
BY	DATE _	/ /
	PROJECT SUBJECT BY	PROJECT NO. PROJECT SUBJECT BY DATE

		ASD Only				ASD	and	LRFD				L	LRFD Only		
		Load Duration Factor ¹	Wet Service Factor	Temperature Factor	Group Action Factor	Geometry Factor ³	Penetration Depth Factor ¹	End Grain Factor ³	Metal Side Plate Factor ³	Diaphragm Factor ³	Toc-Nail Factor 3	X Format Conversion Factor	Resistance Factor	Time Effect Factor	
6		42	Lat	eral I	oads	to :	H92 - 2	01 V		52 SE		8 A	3. 30	2	
Dowel-type Fasteners (e.g. bolts, lag screws, wood screws, nails, spikes, drift bolts, & drift pins)	Z = Z x	CD	См	Ct	Cg	C_{Δ}	÷	\mathbf{C}_{eg}		C_{di}	C _{tn}	3.32	0.65	λ	
Split Ring and Shear Plate Connectors	P' = P x Q' = Q x	C _D C _D	C _M C _M	Ct Ct	C_{g} C_{g}	$\begin{array}{c} C_{\Lambda} \\ C_{\Lambda} \end{array}$	C _d C _d	42 32	C _{st}	12		3.32 3.32	0.65	λ	
Timber Rivets	P = P x Q = Q x	C _D C _D	C _M C _M	Ct Ct	20 - 21 20-21	C_{Δ}^{5}	10 ₩		C_{st}^{4} C_{st}^{4}	13 19	20 0) 2000	3.32 3.32	0.65	λ λ	
Spike Grids	Z' = Z x	CD	См	Ct	850	C_{Δ}	55	μ.	1273	87	8573	3.32	0.65	λ	
			Withd	lrawa	l Loa	ds									
Nails, spikes, lag screws, wood screws, & drift pins	W' = W x	CD	${C_M}^2$	Ct	3 7 8		÷	C _{eg}		ж	Ctn	3.32	0.65	λ	

1. The load duration factor, C_D, shall not exceed 1.6 for connections (see 11.3.2).

2. The wet service factor, CMs shall not apply to toe-nails loaded in withdrawal (see 12.5.4.1).

3. Specific information concerning geometry factors Ca, penetration depth factors Ca, end grain factors, Ceg, metal side plate factors, Ca, diaphragm factors, Ca, and toe-nail factors, Cim is provided in Chapters 12, 13, and 14.

The metal side plate factor, C_a, is only applied when iviet capacity (P_n, Q_n) controls (see Chapter 14).
 The geometry factor, C_a, is only applied when wood capacity, Q_w, controls (see Chapter 14).

11.3.2 Load Duration Factor, Cp (ASD Only)

Reference design values shall be multiplied by the load duration factors, $C_D \le 1.6$, specified in 2.3.2 and Appendix B, except when the capacity of the connection is controlled by metal strength or strength of concrete/masonry (see 11.2.3, 11.2.4, and Appendix B.3). The impact load duration factor shall not apply to connections.

11.3.3 Wet Service Factor, CM

Reference design values are for connections in wood seasoned to a moisture content of 19% or less and used under continuously dry conditions, as in most covered structures. For connections in wood that is unseasoned or partially seasoned, or when connections are exposed to wet service conditions in use, reference design values shall be multiplied by the wet service factors, C_{sp}, specified in Table 11.3.3.

11.3.4 Temperature Factor, Ct

Reference design values shall be multiplied by the temperature factors, C, in Table 11.3.4 for connections that will experience sustained exposure to elevated temperatures up to 150°F (see Appendix C).

/ /

Tabulated Leng	withdraw gth of thr	al design v ead penetra	alues (W) ation in m	are in pou ain memb	inds per in er shall no	nch of thre ot include	ead penetr the length	ation into of the tap	side grain ered tip (s	of wood r ee 12.2.1.1	nember.).
Specific Gravity,		200 202			Lag Sci	ew Diam	eter, D	×	102		
G ²	1/4"	5/16"	3/8"	7/16"	1/2"	5/8"	3/4"	7/8"	1"	1-1/8"	1-1/4"
0.73	397	469	538	604	668	789	905	1016	1123	1226	1327
0.71	381	450	516	579	640	757	868	974	1077	1176	1273
0.68	357	422	484	543	600	709	813	913	1009	1103	1193
0.67	349	413	473	531	587	694	796	893	987	1078	1167
0.58	281	332	381	428	473	559	641	719	795	869	940
0.55	260	307	352	395	437	516	592	664	734	802	868
0.51	232	274	314	353	390	461	528	593	656	716	775
0.50	225	266	305	342	378	447	513	576	636	695	752
0.49	218	258	red	332	367	434	498	559	617	674	730
0.47	205	242	278	312	345	408	467	525	580	634	686
0.46	199	235	269	302	334	395	453	508	562	613	664
0.44	186	220	252	283	312	369	423	475	525	574	621
0.43	179	212	243	273	302	357	409	459	508	554	600
0.42	173	205	235	264	291	344	395	443	490	535	579
0.41	167	198	226	254	281	332	381	428	473	516	559
0.40	161	190	218	245	271	320	367	412	455	497	538
0.39	155	183	210	236	261	308	353	397	438	479	518
0.38	149	176	202	227	251	296	340	381	422	461	498
0.37	143	169	194	218	241	285	326	367	405	443	479
0.36	137	163	186	209	231	273	313	352	389	425	460
0.35	132	156	179	200	222	262	300	337	373	407	441
0.31	110	130	149	167	185	218	250	281	311	339	367

Tabulated withdrawal design values, W, for lag screw connections shall be multiplied by all applicable adjustment factors (see Table 11.3.1).
 Specific gravity, G, shall be determined in accordance with Table 12.3.3A.

12.2.3.2 For calculation of the fastener reference withdrawal design value in pounds, the unit reference withdrawal design value in lbs/in. of fastener penetration from 12.2.3.1 shall be multiplied by the length of fastener penetration, p_{t_s} into the wood member.

12.2.3.3 The reference withdrawal design value, in lbs/in. of penetration, for a single post-frame ring shank nail driven in the side grain of the main member, with the nail axis perpendicular to the wood fibers, shall be determined from Table 12.2D or Equation 12.2-4, with-in the range of specific gravities and nail diameters giv-en in Table 12.2D. Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Table 11.3.1) to obtain adjusted withdrawal design values, W'.

W = 1800 G² D (12.2-4)

12.2.3.4 For calculation of the fastener reference withdrawal design value in pounds, the unit reference withdrawal design value in lbs/in. of ring shank penetration from 12.2.3.3 shall be multiplied by the length of ring shank penetration, p_b into the wood member. 12.2.3.5 Nails and spikes shall not be loaded in

withdrawal from end grain of wood (C_{eg} =0.0). 12.2.3.6 Nails, and spikes shall not be loaded in

withdrawal from end-grain of laminations in crosslaminated timber (C_{eg} =0.0).

12.2.4 Drift Bolts and Drift Pins

Reference withdrawal design values, W, for connections using drift bolt and drift pin connections shall be determined in accordance with 11.1.1.3. DOWEL-TYPE FASTENERS

 $\mathbf{12}$

		PROJECT NO.	SHEET NO.
	PROJECT _		
LONGITUDE	SUBJECT _		
ONE TWENTY [®] ENGINEERING & DESIGN	BY	DATE _	/ /

Table 12.3.3A Assigned Specific Gravities

Species Combination	Specific ¹ Gravity, G	Species Combinations of MSR and MEL Lumber	Specific ¹ Gravity, G
Alaska Cedar	0.47	Douglas Fir-Larch	
Alaska Hemlock	0.46	E=1,900,000 psi and lower grades of MSR	0.50
Alaska Spruce	0.41	E=2,000,000 psi grades of MSR	0.51
Alaska Yellow Cedar	0.46	E=2,100,000 psi grades of MSR	0.52
Aspen	0.39	E=2,200,000 psi grades of MSR	0.53
Balsam Fir	0.36	E=2,300,000 psi grades of MSR	0.54
Beech-Birch-Hickory	0.71	E=2,400,000 psi grades of MSR	0.55
Coast Sitka Spruce	0.39	Douglas Fir-Larch (North)	
Cottonwood	0.41	E=1,900,000 psi and lower grades of MSR and MEL	0.49
Douglas Fir-Larch	0.50	E=2,000,000 psi to 2,200,000 psi grades of MSR and MEL	0.53
Douglas Fir-Larch (North)	0.49	E=2,300,000 psi and higher grades of MSR and MEL	0.57
Douglas Fir-South	0.46	Douglas Fir-Larch (South)	
Eastem Hemlock	0.41	E=1,000,000 psi and higher grades of MSR	0.46
Eastem Hemlock-Balsam Fir	0.36	Engelmann Spruce-Lodgepole Pine	
Eastern Hemlock-Tamarack	0.41	E=1,400,000 psi and lower grades of MSR	0_38
Eastern Hemlock-Tamarack (North)	0.47	E=1,500,000 psi and higher grades of MSR	0.46
Eastern Softwoods	0.36	Hem-Fir	
Eastern Spruce	0.41	E=1,500,000 psi and lower grades of MSR	0.43
Eastern White Pine	0.36	E=1,600,000 psi grades of MSR	0.44
Engelmann Spruce-Lodgepole Pine	0.38	E=1,700,000 psi grades of MSR	0.45
Hem-Fir	0.43	E=1,800,000 psi grades of MSR	0.46
Hem-Fir (North)	0.46	E=1,900,000 psi grades of MSR	0.47
Mixed Maple	0.55	E=2,000,000 psi grades of MSR	0.48
Mixed Oak	0.68	E=2,100,000 psi grades of MSR	0.49
Mixed Southern Pine	0.51	E=2,200,000 psi grades of MSR	0.50
Mountain Hemlock	0.47	E=2,300,000 psi grades of MSR	0.51
Northern Pine	0.42	E=2,400,000 psi grades of MSR	0.52
Northern Red Oak	0.68	Hem-Fir (North)	
Northern Species	0.35	E=1,000,000 psi and higher grades of MSR and MEL	0.46
Northern White Cedar	0.31	Southern Pine	
Ponderosa Pine	0.43	E=1,700,000 psi and lower grades of MSR and MEL	0.55
Red Maple	0.58	E=1.800.000 psi and higher grades of MSR and MEL	0.57
Red Oak	0.67	Spruce-Pine-Fir	
Red Pine	0.44	E=1,700,000 psi and lower grades of MSR and MEL	0.42
Redwood, close grain	0.44	E=1,800,000 psi and 1,900,000 grades of MSR and MEL	0.46
Redwood, open grain	0.37	E=2,000,000 psi and higher grades of MSR and MEL	0.50
Sitka Spruce	0.43	Spruce-Pine-Fir (South)	
Southern Pine	0.55	E=1.100.000 psi and lower grades of MSR	0.36
Spruce-Pine-Fir	0.42	E=1,200,000 psi to1,900,000 psi grades of MSR	0.42
Spruce-Pine-Fir (South)	0.36	E=2,000,000 psi and higher grades of MSR	0.50
Western Cedars	0.36	Western Cedars	1907.51
Western Cedars (North)	0.35	E=1,000,000 psi and higher grades of MSR	0.36
Western Hemlock	0.47	Western Woods	vereed.
Western Hemlock (North)	0.46	E=1,000,000 psi and higher grades of MSR	0.36
Western White Pine	0.40		an analis
Western Woods	0.36		
White Oak	0.73		
Vallaw Poplar	0.43		

1. Specific gravity, G, based on weight and volume when oven-dry. Different specific gravities, G, are possible for different grades of MSR and MEL lumber (see Table 4C, Footnote 2).

		PROJECT NO.	SHEET NO.
	PROJECT		
ONE TWENTY ^O ENGINEERING & DESIGN	BY	DATE _	/ /

(two member) Connections1,2,3,4 for sawn lumber or SCL with ASTM A653, Grade 33 steel side plate (for ts<1/4") or

ASTM A 36 steel side plate (for t_s=1/4")

Table 12K

(tabulated lateral design values are calculated based on an assumed length of lag screw penetration, p, into the main member equal to 8D)

LAG SCREWS: Reference Lateral Design Values, Z, for Single Shear

5	Side Member Thickness	Lag Screw Diameter	G=0.67	Red Oak	G=0.55	southern Pine	G=0.5	Douglas Fir-Larch	G=0.49 Devolae EieJ arob	(N)	G=0.46 Deviations Electro	Hem-Fir(N)	G=0.43	Hem-Fir	G=0.42	Spruce-Pine-Fir	G=0.37 Redwood	(open grain)	G=0.36 Eastern Softwood Sonuca-Pine-Fin/S	Western Cedars Western Woods	G=0.35	Northern Species
	t,	D	Z	Z,	z,	Z	z,	ZL	Z,	ZL	Z,	ZL	Z	Z,	Z	Z,	Z	Z,	Z,	ZL	Z,	Z1
	in.	in.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	Ibs.	lbs.	lbs.	lbs.	lbs.
	0.075	1/4	170	130	160	120	150	110	150	110	150	100	140	100	140	100	130	90	130	90	130	90
	(14 gage)	5/16	220	160	200	140	190	130	190	130	190	130	180	120	180	120	170	110	170	110	160	100
		3/8	220	160	200	140	200	130	190	130	190	120	180	120	180	120	170	110	170	100	170	100
	0.105	1/4	180	140	170	130	160	120	160	120	160	110	150	110	150	110	140	100	140	100	140	90
	(12 gage)	5/16	230	170	210	150	200	140	200	140	190	130	190	130	190	120	180	110	170	110	170	110
		3/8	230	160	210	140	200	140	200	130	200	130	190	120	190	120	180	110	180	110	170	110
	0.120	1/4	190	150	180	130	170	120	170	120	160	120	160	110	160	110	150	100	150	100	140	100
	(11 gage)	5/16	230	170	210	150	210	140	200	140	200	140	190	130	190	130	180	120	180	120	180	110
		3/8	240	170	220	150	210	140	210	140	200	130	200	130	190	120	180	110	180	110	180	110
	0.134	1/4	200	150	180	140	180	130	170	130	170	120	160	120	160	110	150	110	150	100	150	100
	(10 gage)	5/16	240	180	220	160	210	150	210	140	200	140	200	130	200	130	190	120	180	120	180	120
		3/8	240	170	220	150	220	140	210	140	210	140	200	130	200	130	190	120	190	120	180	110
	0.179	1/4	220	170	210	150	200	150	200	140	190	140	190	130	190	130	180	120	170	120	170	120
	(7 gage)	5/16	260	190	240	170	230	160	230	160	230	150	220	150	220	150	210	130	200	130	200	130
		3/8	270	190	250	170	240	160	240	160	230	150	220	140	220	140	210	130	210	130	200	130
	0.239	1/4	240	180	220	160	210	150	210	150	200	140	190	140	190	130	180	120	180	120	180	120
	(3 gage)	5/16	300	220	280	190	270	180	260	180	260	170	250	160	250	160	230	150	230	150	230	140
		3/8	310	220	280	190	270	180	270	180	260	170	250	160	250	160	240	140	230	140	230	140
		7/16	420	290	390	260	380	240	370	240	360	230	350	220	350	220	330	200	330	200	320	190
		1/2	510	340	470	300	460	290	450	280	440	270	430	260	420	260	400	240	400	230	390	230
		5/8	770	490	710	430	680	400	680	400	660	380	640	370	630	360	600	330	590	330	580	320
		3/4	1110	670	1020	590	980	560	970	550	950	530	920	500	910	500	860	450	850	450	840	440
		7/8	1510	880	1390	780	1330	730	1320	710	1280	690	1250	650	1230	650	1170	590	1160	590	1140	570
		1	1940	1100	1780	960	1710	910	1700	890	1650	860	1600	820	1590	810	1500	740	1480	730	1460	710
	1/4	1/4	240	180	220	160	210	150	210	150	200	140	200	140	190	130	180	120	180	120	180	120
		5/16	310	220	280	200	270	180	270	180	260	170	250	170	250	160	230	150	230	150	230	140
)	3/8	320	220	290	190	280	180	270	180	270	170	260	160	250	160	240	150	240	140	230	140
		7/16	480	320	440	280	420	20	420	260	410	250	390	240	390	230	370	220	360	210	360	210
		1/2	580	390	540	340	520	320	510	320	500	310	480	290	480	290	460	270	450	260	440	260
		5/8	850	530	780	470	750	440	740	440	720	420	700	400	690	400	660	370	650	360	640	350
		3/4	1200	730	1100	640	1060	600	1050	590	1020	570	990	540	980	530	930	490	920	480	900	470
		7/8	1600	930	1470	820	1410	770	1400	750	1360	720	1320	690	1310	680	1240	630	1220	620	1200	600
		1	2040	1150	1870	1000	1800	950	1780	930	1730	900	1680	850	1660	840	1570	770	1550	760	1530	740

1. Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1).

Tabulated lateral design values, Z, shall be intripried by an appreciate adjustment factors (see Faber 17.57).
 Tabulated lateral design values, Z, are for "reduced body diameter" lag screws (see Appendix Table L2) inserted in side grain with screw axis perpendicular to wood fibers; screw penetration, p, into the main member equal to 8D; dowel bearing strengths, F_e, of 61,850 psi for ASTM A653, Grade 33 steel and 87,000 psi for ASTM A36 steel and screw bending yield strengths, F_{yin} of 70,000 psi for D = 1/4", 60,000 psi for D = 5/16", and 45,000 psi for D ≥3/8".
 Where the lag screw penetration, p, is less than 8D but not less than 4D, tabulated lateral design values, Z, shall be multiplied by p/8D or lateral design values.

shall be calculated using the provisions of 12.3 for the reduced penetration.
4. The length of lag screw penetration, p, not including the length of the tapered tip, E (see Appendix Table L2), of the lag screw into the main member shall not be less than 4D. See 12.1.4.6 for minimum length of penetration, p_{min}.

To determine the minimum required hand-rail connections, with a pre-manufactured hand-rail system provided by others. Our scope is limited to assess the minimum connection requirements of the hand-rail system as listed below. Our assumptions are that the base-plates, welds and metal member properties of the pre-manufactured complete system are sufficient in strength to support the code prescribed design loads, for which our design have been provided to comply with.

We have analyzed and verified the minimum connection requirements, for the following conditions:

- Wall connection (sloping wall @ stair) Result: minimum (2) ¼" DIA x 3" SDS screws to a minimum of (1) support studs at each connection
- Base-plate connection (vertical post application, typical)
 Result: The base-plate column connection to have a minimum of (4) 3/8" x 4 ½ lag-screws into full width support member/beams below
- Wall connection (horizontal typical application)
 Result: (2) ¼" DIA x 3" SDS screws to a minimum of (2) support studs at each connection

PROJECT

BELONS

BASE

٨

X

2,850 Lbs demand 2 3,10 CAPACITY

W(2) 1/4× 492 = 1,145.165 LAG× 4/2*

W(2) 3/8"x 4/2 × 2 = 243× 4". ×2 ×1.6

NOT WORKING

perty

= 3,110. -

PROJECT

ONGITUDE ONE TWENTY°

LI2D ENGINEERING & DESIGN

SIMPSON

Strong-I

Anchor Designer™ Software

Version 2.5.6582.0

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Concrete screw Material: Carbon Steel Diameter (inch): 0.375 Nominal Embedment depth (inch): 3.250 Effective Embedment depth, her (inch): 2.400 Code report: ICC-ES ESR-2713 Anchor ductility: No hmin (inch): 5.00 cac (inch): 3.63 Cmin (inch): 1.75 Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 1.2(D + F) + 1.6(L) + 0.5(Lr or S or R)Seismic design: No Anchors subjected to sustained tension: Not applicable Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Company:	L120 Engineering & Design	Date:	5/3/2018
Engineer:	MRT	Page:	1/5
Project:	Hand-rail calculation		
Address:			
Phone:			
E-mail:			

Project description: Location: Fastening description:

Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 6.00 State: Cracked Compressive strength, f_c (psi): 2500 $\Psi_{c,V}$: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Ignore 6do requirement: Not applicable Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 6.00 x 6.00 x 0.25

816

Anchor Designer™ Software Version 2.5.6582.0

Company:	L120 Engineering & Design	Date:	5/3/2018
Engineer:	MRT	Page:	2/5
Project:	Hand-rail calculation		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: Titen HD® - 3/8"Ø Titen HD, hnom:3.25" (83mm) Code Report: ICC-ES ESR-2713

N Anchor Designer ^{IM}	Company:	L120 Engineering & Design	Date:	5/3/2018			
	Engineer:	MRT	Page:	3/5			
Software	Project:	Hand-rail calculation					
Version 2.5.6582.0	Address:						
w.	Phone:						
	E-mail:						

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	1250.4	-80.0	0.0	80.0
2	1250.4	-80.0	0.0	80.0
3	0.0	-80.0	0.0	80.0
4	0.0	-80.0	0.0	80.0
Sum	2500 7	-320.0	0.0	320.0

Maximum concrete compression strain (‰): 0.12 Maximum concrete compression stress (psi): 538 Resultant tension force (lb): 2501 Resultant compression force (lb): 2501 Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{vy} (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

Nsa (lb)	ϕ	ϕN_{sa} (lb)
10890	0.65	7079

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.4.2)

$N_b = k_c \lambda_a \sqrt{f}$	⁷ chef ^{1.5} (Eq. 17.	4.2.2a)							
Kc	λa	ťc (psi)	hef (in)	N♭ (Ib)				
17.0	1.00	2500	2.400	3160					
$\phi N_{cbg} = \phi (A$	Nc / ANco) $\Psi_{ec,N}$	$\Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$	(Sec. 17.3.1 &	& Eq. 17.4.2.1	b)				
A_{Nc} (in ²)	A_{Nco} (in ²)	c _{a,min} (in)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,I}$	<i>N_b</i> (lb)	ϕ	ϕN_{cbg} (lb)
72.72	51.84	2.25	1.000	0.888	1.00	1.00	0 3160	0.65	2557
6. Pullout	Strength of A	Anchor in Tens	sion (Sec. 17.	<u>4.3)</u>					
$\phi N_{pn} = \phi \Psi_{c,}$	_{.P} λ _a N _p (f'c / 2,50	0) ⁿ (Sec. 17.3.1	, Eq. 17.4.3.1	& Code Repo	ort)				
Ψc,P	λa	N _p (lb)	f'c (psi)	n		ϕ	ϕN_{pn} (lb)		
1.0	1.00	2700	2500	0.50		0.65	1755	_	

SIMPSON Anchor Designer™ Software Version 2.5.6582.0

Company:	L120 Engineering & Design	Date:	5/3/2018
Engineer:	MRT	Page:	4/5
Project:	Hand-rail calculation		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. 17.5.1)

V _{sa} (lb)	$\phi_{ ext{grout}}$	ϕ	$\phi_{grout}\phi V_{sa}$ (lb)
4460	1.0	0.60	2676

9. Concrete Breakout Strength of Anchor in Shear (Sec. 17.5.2)

Shear parallel to edge in x-direction: $V_{by} = \min[7(I_e/d_a)^{0.2} \sqrt{d_a \lambda_a} \sqrt{f_c c_{a1}^{1.5}}; 9\lambda_a \sqrt{f_c c_{a1}^{1.5}}] \text{ (Eq. 17.5.2.2a \& Eq. 17.5.2.2b)}$ le (in) *d*₄ (in) Vby (lb) λa f'c (psi) Ca1 (in) 2500 2.40 0.375 1.00 2.25 1049 $\phi V_{cbgx} = \phi (2) (A_{Vc} / A_{Vco}) \Psi_{ec,V} \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by}$ (Sec. 17.3.1, 17.5.2.1(c) & Eq. 17.5.2.1b) A_{Vc} (in²) A_{Vco} (in²) $\Psi_{ec,V}$ $\Psi_{ed,V}$ $\Psi_{c,V}$ $\Psi_{h,V}$ V_{by} (lb) ϕV_{cbgx} (lb) ø 33.33 22.78 1.000 1.000 1.000 1.000 1049 0.70 2148

10. Concrete Pryout Strength of Anchor in Shear (Sec. 17.5.3)

\$Vcpg = \$\phi kcpNcbg = \$\phi kcp(Anc / Anco) \$\mathcal{Y}ec,N \$\mathcal{Y}ec,N \$\mathcal{V}ec,N \$									
Kcp	Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{\text{ed},N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N♭ (lb)	ϕ	ϕV_{cpg} (lb)
1.0	102.01	51.84	1.000	0.888	1.000	1.000	3160	0.70	3863

11. Results

Interaction of Tensile and Shear Forces (Sec. 17.6.)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1250	7079	0.18	Pass
Concrete breakout	2501	2557	0.98	Pass (Governs)
Pullout	1250	1755	0.71	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	80	2676	0.03	Pass
Concrete breakout y+	160	2148	0.07	Pass
Pryout	320	3863	0.08	Pass (Governs)
Interaction check Nual	′φΝn Vua/φVn	Combined Ratio	o Permissible	Status
Sec. 17.61 0.98	3 0.00	97.8 %	1.0	Pass

3/8"Ø Titen HD, hnom:3.25" (83mm) meets the selected design criteria.

Company:	L120 Engineering & Design	Date:	5/3/2018
Engineer:	MRT	Page:	5/5
Project:	Hand-rail calculation		
Address:			
Phone:			
E-mail:			

12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.

- Designer must exercise own judgement to determine if this design is suitable.

- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Project: Location: Single 2x4 stud (staircase) Multi-Loaded Multi-Span Beam [2015 International Building Code(2015 NDS)] 1.5 IN x 3.5 IN x 8.0 FT #2 - Hem-Fir - Dry Use Section Adequate By: 0.8% Controlling Factor: Deflection	StruCalc 9.0 StruCalc Version 10.0.1.6
DEFLECTIONS Center Live Load 0.53 IN L/181 Dead Load 0.01 in Total Load 0.54 IN L/177 Live Load Deflection Criteria: L/180 Total Load Deflection Criteria: L/120 REACTIONS A B Live Load 100 Ib 100 Dead Load 4 Ib 4 Ib	
I otal Load 104 lb 104 lb Bearing Length 0.17 in 0.17 in BEAM DATA Center Span Length 8 ft Unberged Length 7 ft	
Unbraced Length-Top 0 Tr Unbraced Length-Bottom 8 ft Live Load Duration Factor 1.60 Notch Depth 0.00	A B
MATERIAL PROPERTIES#2 - Hem-FirBase ValuesAdjustedBending Stress:Fb =850 psiFb' =2040 psi	Uniform Load 0 plf Uniform Dead Load 0 plf Beam Self Weight 1 plf Total Uniform Load 1 plf
$Cd=1.60 \ CF=1.50$ Shear Stress: $Fv = 150 \ psi \ Fv' = 240 \ psi \ Cd=1.60$ Modulus of Elasticity: $E = 1300 \ ksi \ E' = 1300 \ ksi \ E = 1300 \ ksi \ ksi \ E = 1300 \ ksi \ ksi \ E = 1300 \ ksi $	POINT LOADS - CENTER SPAN Load Number One Live Load 200 lb Dead Load 0 lb
Controlling Moment: 408 ft-lb	Location 4 ft

4.0 Ft from left support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2 **Controlling Shear:** -104 lb At right support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:	Req'd	Provided
Section Modulus:	2.4 in3	3.06 in3
Area (Shear):	0.65 in2	5.25 in2
Moment of Inertia (deflection):	5.32 in4	5.36 in4
Moment:	408 ft-lb	521 ft-lb
Shear:	-104 lb	840 lb

Project: Location: Single 2x6 stud (staircase) Multi-Loaded Multi-Span Beam [2015 International Building Code(2015 NDS)] 1.5 IN x 5.5 IN x 9.0 FT #2 - Hem-Fir - Dry Use Section Adequate By: 139.3% Controlling Factor: Moment	StruCalc 9.0 page of the second
DEFLECTIONS Center Live Load 0.19 IN L/556 Dead Load 0.01 in Total Load 0.20 IN L/533 Live Load Deflection Criteria: L/180 Total Load Deflection Criteria: L/120 REACTIONS A B Live Load 100 Ib 100 Ib Dead Load 7 Ib 7 Ib	LOADING DIAGRAM
Total Load107 lb107 lbBearing Length0.18 in0.18 inBEAM DATACenterSpan Length9 ftUnbraced Length-Top0 ftUnbraced Length-Bottom9 ftLive Load Duration Factor1.60	A 9 ft B
Notch Depth0.00MATERIAL PROPERTIES#2 - Hem-FirBending Stress:Ease ValuesFb =850 psiFb =850 psiFb =1768 psiCd=1 60 CE=1 30	UNIFORM LOADS Center Uniform Live Load 0 plf Uniform Dead Load 0 plf Beam Self Weight 2 plf Total Uniform Load 2 plf
Shear Stress: $Fv = 150 \text{ psi}$ $Fv' = 240 \text{ psi}$ Modulus of Elasticity: $Cd=1.60$ Modulus of Elasticity: $E = 1300 \text{ ksi}$ $E' = 1300 \text{ ksi}$ Comp. \perp to Grain: $Fc - \perp = 405 \text{ psi}$ $Fc - \perp' = 405 \text{ psi}$ Controlling Moment: 466 ft-lb	POINT LOADS - CENTER SPANLoad Number <u>One</u> Live Load200 lbDead Load0 lbLocation4.5 ft

4.5 Ft from left support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2 Controlling Shear: -107 lb At right support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:	Req'd	Provided
Section Modulus:	3.16 in3	7.56 in3
Area (Shear):	0.67 in2	8.25 in2
Moment of Inertia (deflection):	6.73 in4	20.8 in4
Moment:	466 ft-lb	1114 ft-lb
Shear:	-107 lb	1320 lb

Project: Location: Double 2x4 stud (flat orientation connection/top) Multi-Loaded Multi-Span Beam [2015 International Building Code(2015 NDS)] (2) 1.5 IN x 3.5 IN x 8.0 FT #2 - Hem-Fir - Dry Use Section Adequate By: 101.6% Controlling Factor: Deflection	StruCalc 9.0 page of the second
DEFLECTIONS Center Live Load 0.26 IN L/363 Dead Load 0.01 in Total Load 0.28 IN L/346 Live Load Deflection Criteria: L/180 Total Load Deflection Criteria: L/120 REACTIONS A B Live Load 100 Ib 100 Ib Dead Load 8 100 Ib 100 Ib Dead Load 108 Ib 108 Ib Bearing Length 0.09 in 0.09 in	LOADING DIAGRAM
BEAM DATA Center Span Length 8 ft Unbraced Length-Top 0 ft Unbraced Length-Bottom 8 ft Live Load Duration Factor 1.60 Notch Depth 0.00	A 8 ft B
MATERIAL PROPERTIES#2 - Hem-FirBase ValuesBending Stress:Fb = 850 psiFb = 850 psiFb' = 2040 psi $Cd=1.60$ CE=1.50	UNIFORM LOADSCenterUniform Live Load0plfUniform Dead Load0plfBeam Self Weight2plfTotal Uniform Load2plf
Shear Stress: $Fv = 150 \text{ psi}$ $Fv' = 240 \text{ psi}$ $Cd=1.60$ Modulus of Elasticity: $Comp. \perp$ to Grain: $Fc - \perp = 405 \text{ psi}$ $Fc - \perp = 405 \text{ psi}$ $Fc - \perp = 405 \text{ psi}$ Controlling Moment:	POINT LOADS - CENTER SPANLoad NumberOneLive Load200 lbDead Load0 lbLocation4 ft

4.0 Ft from left support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2 **Controlling Shear:** 108 lb At left support of span 2 (Center Span) Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:	<u>Req'd</u>	Provided
Section Modulus:	2.45 in3	6.13 in3
Area (Shear):	0.67 in2	10.5 in2
Moment of Inertia (deflection):	5.32 in4	10.72 in4
Moment:	416 ft-lb	1041 ft-lb
Shear:	108 lb	1680 lb

Balloon Framed stud calculations

	DATE:	3/3/2021		COMPANY:	L120	Engineering & Desig	n, LLC
VITRUVIU	S BUILD:	StruCalc		DESIGNED BY:	Man	s Thurfjell	
CUS	STOMER:			REVIEWED BY:	Man	s Thurfjell	
PROJECT LO	CATION:						
		,					
	LEVEL:	Roof		LOADING:	ASD		
LO	CATION:	2x6 Ballo	on Frame (12" o.c.) (w	vind load @@@& r a	ap 2p0118	dratednaticomalaBuliLolin	ig Code
	TYPE:	COLUMN		NDS:	2018	NDS	-
М	ATERIAL:	SOLID SA	WN				
Hem-Fir	No	. 2	(1) 1.5 X 5.5	DRY			

COL	UMN PRC	PERTIES									
Start (ft	:): 0 End (ft):	17.25 Me	mber Slope: 0/12 A	ctual Lengtl	h (ft): 17.25						
	Area		lx	ly		BSW	Lar	ns	G		Kcr
	(in²)		(in⁴)	(in⁴)		(lbf/ft)				Ci	eep Factor
	8.25		20.8	1.55		1.63	1		0.43		1
STR	ENGTH PF	ROPERTIE	S								
		Fb (psi)	Ft (psi)		Fv (psi)	Fc (psi)		Fc⊥(psi)	E (psi) x10 ³	Er	min (psi) x10³
Base	Values	850	525		150	1300		405	1300		470
Adjusted	Values	1105	682		150	1430		405	1300		470
	с _М	1	1		1	1		1	1		1
	C _T	1	1		1	1		1	1		1
	C _i	1	1		1	1		1	1		1
	CF	1.3	1.3		1	1.1		1	1		1
Bending	g Adjustment	Factors	C _{fu} = 1 C _r = 1								
COL	UMN DA1	ГА									
			Unbraced Length	(ft)	Column End						
Span	Leng	jth (ft)	Х	Y	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d	(Y Axis)
1	17	7.25	17.25	1	0	0.18	1.00	1.00	37.64		8
PAS	S-FAIL										
			PASS/FAIL	MAG	GNITUDE	STRENGTH	LOC	ATION (ft)	LOAD COMBO	DURAT	ION FACTOR C
	Shear Str	ess Y (psi)	PASS (89.5%)		15.7	150.0		17.25	D+L		1
	Bending Str	ess Y (psi)	PASS (46.3%)	ļ	590.2	1099.4		8.62	D+L		1
	Defl	ection (in)	PASS (35.9%)	0.737	(=L/281)	1.150 (=L/180)		8.62	L		
С	ompressive S	tress (psi)	PASS (61.6%)		100.4	261.1		0	D+L		1
	Bearing S	Stress (psi)	PASS (98.9%)		16.4	1430.0		0	D+L		1
Bendi	ng-Compress	ion (Unit)	PASS (1.6%)		0.98	1.00		8.62	D+L		1
REA	CTIONS	Units for	V: lbf Units for M:	lbf-ft							
Z axis	DEAD	LIVE	LIVE ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
Α	328	500	0	0	0	0	0	0	0	0	0
В	0	0	0	0	0	0	0	0	0	0	0
- Y axis	÷	-	-	-	•	2	2	2	-	-	÷
Α	0	86	0	0	0	0	0	0	0	0	0
в	0	86	0	0	0	0	0	0	0	0	0
Reactio	n Location										

Α

В

LOAD LIST						
Туре	Left Magnitude	Right Magnitude	Load Start (ft)	Load End (ft)	Load Type	Direction
Uniform (lbf/ft)	10	10	0	17.25	Live	Y
Point (lbf)	-500	-	17.25	-	Live	Z
Point (lbf)	-300	-	17.25	-	Dead	Z
Self Weight (lbf/ft)	1.63	1.63	0	17.25	Dead	Z
Self Weight (lbf/ft)	1.63	1.63	0	17.25	Dead	Z

NOTES

Page 20

	DATE:	3/3/2021		COMPANY:	L120	Engineering & Desig	n, LLC
VITRUVIUS	BUILD:	StruCalc		DESIGNED BY:	Man	s Thurfjell	
CUS	TOMER:			REVIEWED BY:	Man	s Thurfjell	
PROJECT LOC	ATION:					-	
		,					
	LEVEL:	Roof		LOADING:	ASD		
LOC	CATION:	1.75x5.5 L	5.5 LSL Balloon Frame (@12") (win dOo aed f			appelied taroch & Bowledia	ng KΩo)de
	TYPE:	COLUMN		NDS:	2018	NDS	-
MA	TERIAL:	STRUCTU	RAL COMPOSITE LUN	/IBER			
Weyerhaeuser	1.55E Timber	Strand LSL	(1) 1.75 X 5.5	DRY			

COL	UMN PR	OPERTIES									
Start (ft	:): 0 End (ft	:): 17.25 Me	ember Slope: 0/12 A	ctual Leng	gth (ft): 17.25						
	Area		Ix	ly		BSW	Lar	ns	Cfn		Kcr
	(in²)		(in⁴)	(in⁴)	(lbf/ft)				Cr	eep Factor
	9.62		24.26	2.46	5	3.01	1		10.87		1
STR	ENGTH P	ROPERTIE	ES								
		Fb (psi)	Ft (psi)		Fv (psi)	Fc (psi)		Fc⊥(psi)	E (psi) x10 ³	En	nin (psi) x10³
Base	Values	2325	1290		310	2170		900	1550		787.815
Adjusted	Values	2325	1290		310	2170		900	1550		788
	с _М	1	1		1	1		1	1		1
	с _т	1	1		1	1		1	1		1
Bending	g Adjustmer	t Factors	$C_V = 1.07 C_r = 1$	Volu	ume factor Is appl	ied on a load coi	mbination ba	sis And Is Not re	flected in the adju	isted valu	es
COL	UMN DA	TA									
_		4. (6)	Unbraced Length	(ft)	Column End	<u> </u>					
Span	Len	igth (ft)	X	Y	Offset		Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (Y Axis)
1	-	17.25	17.25	1	0	0.21	1.00	1.00	37.64	6.8	86
PAS	S-FAIL										
			PASS/FAIL	M	AGNITUDE	STRENGTH	LOC	ATION (ft)	LOAD COMBO	DURAT	ION FACTOR CD
	Shear S	tress Y (psi)	PASS (95.7%)		13.4	310.0		17.25	D+L		1
	Bending St	tress Y (psi)	PASS (79.7%)		505.9	2486.4		8.62	D+L		1
	De	flection (in)	PASS (53.9%)	0.5	30 (=L/391)	1.150 (=L/180)		8.62	L		
C	ompressive	Stress (psi)	PASS (40.5%)		265.1	445.7		0	D+L		1
	Bearing	Stress (psi)	PASS (99.4%)		14.1	2170.0		0	D+L		1
Bendi	ng-Compres	ssion (Unit)	PASS (17.5%)		0.82	1.00		8.45	D+L		1
REA	CTIONS	Units for	V: lbf Units for M	lbf-ft							
Z axis	DEAD	LIVE	LIVE ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
Α	1052	1500	0	0	0	0	0	0	0	0	0
В	0	0	0	0	0	0	0	0	0	0	0
Y axis											
А	0	86	0	0	0	0	0	0	0	0	0
В	0	86	0	0	0	0	0	0	0	0	0
Reactio	n Location										
A											В

LOAD LIST						
Туре	Left Magnitude	Right Magnitude	Load Start (ft)	Load End (ft)	Load Type	Direction
Point (lbf)	-1500	-	17.25	-	Live	Z
Point (lbf)	-1000	-	17.25	-	Dead	Z
Uniform (lbf/ft)	10	10	0	17.25	Live	Y
Self Weight (lbf/ft)	3.01	3.01	0	17.25	Dead	Z

NOTES

Page 22

	DATE:	3/3/2021		COMPANY:	L120 E	Engineering & Desig	n, LLC		
VITRUVIU	S BUILD:	StruCalc		DESIGNED BY:	Mans	Thurfjell			
CU	STOMER:	REVIEWED BY:				Mans Thurfjell			
PROJECT LO	CATION:								
		,							
	LEVEL:	Roof		LOADING:	ASD				
LO	CATION:	2x6 Ballo	on Frame (8" o.c.) (Wi	ind load Carter : a	p20itedl	aterisationnab Bull)din	g Code		
	TYPE:	COLUMN		NDS:	2018	NDS			
М	ATERIAL:	SOLID SA	WN						
Hem-Fir	No	. 2	(1) 1.5 X 5.5	DRY					

COL	UMN PRC	PERTIES									
Start (ft): 0 End (ft):	17.25 Me	mber Slope: 0/12 A	ctual Lengtl	h (ft): 17.25						
	Area		lx	ly		BSW	Lai	ms	G		Kcr
	(in²)		(in⁴)	(in⁴)		(lbf/ft)				Сг	eep Factor
	8.25		20.8	1.55		1.63	1	1	0.43		1
STR	ENGTH PR	OPERTIE	S								
		Fb (psi)	Ft (psi)		Fv (psi)	Fc (psi)		Fc⊥(psi)	E (psi) x10 ³	Er	nin (psi) x10³
Base	Values	850	525		150	1300		405	1300		470
Adjusted	Values	1105	682		150	1430		405	1300		470
	с _м	1	1		1	1		1	1		1
	СT	1	1		1	1		1	1		1
	c _i	1	1		1	1		1	1		1
	C _F	1.3	1.3		1	1.1		1	1		1
Bending	g Adjustment	Factors	C _{fu} = 1 C _r = 1								
COL	UMN DAT	A									
			Unbraced Length	(ft)	Column End						
Span	Leng	th (ft)	Х	Y	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (Y Axis)
1	17	.25	17.25	1	0	0.18	1.00	1.00	37.64	1	3
PAS	S-FAIL										
			PASS/FAIL	MAG	GNITUDE	STRENGTH	LOC	ATION (ft)	LOAD COMBO	DURAT	ION FACTOR C
	Shear Str	ess Y (psi)	PASS (92.7%)		11.0	150.0		17.25	D+L		1
	Bending Stre	ess Y (psi)	PASS (62.4%)		413.1	1099.4		8.62	D+L		1
	Defle	ection (in)	PASS (55.1%)	0.516	(=L/401)	1.150 (=L/180)		8.62	L		
С	ompressive S	tress (psi)	PASS (49.9%)		130.7	261.1		0	D+L		1
	Bearing S	tress (psi)	PASS (99.2%)		11.5	1430.0		0	D+L		1
Bendi	ng-Compress	ion (Unit)	PASS (4.3%)		0.96	1.00		8.45	D+L		1
REA	CTIONS	Units for	/: lbf Units for M:	lbf-ft							
Z axis	DEAD	LIVE	LIVE ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
А	528	550	0	0	0	0	0	0	0	0	0
В	0	0	0	0	0	0	0	0	0	0	0
Y axis											
Α	0	60	0	0	0	0	0	0	0	0	0
В	0	60	0	0	0	0	0	0	0	0	0
Reactio	n Location										

Α

В

Type Left Magn	itude Right Magnite	ude Load Start (f	t) Load End (f	t) Load Type	Direction
Point (lbf) -550	-	17.25	-	Live	Z
Point (lbf) -500	-	17.25	-	Dead	Z
Uniform (lbf/ft) 7	7	0	17.25	Live	Y
Self Weight (lbf/ft) 1.63	1.63	0	17.25	Dead	Z

NOTES

Page 24

	DATE:	3/3/2021		COMPANY:	L120	Engineering & Desig	n, LLC
VITRUVIU	S BUILD:	StruCalc		DESIGNED BY:	Man	s Thurfjell	
CU	STOMER:			REVIEWED BY:	Man	s Thurfjell	
PROJECT LO	CATION:					-	
		,					
	LEVEL:	Roof		LOADING:	ASD		
LO	CATION:	175x5.5 L	SL Balloon Frame (@	8") (Win đ@DaE t f	a ∂1001 18	appelierataiodad/Bowldia	gl⊈òde
	TYPE:	COLUMN		NDS:	2018	NDS	-
М	ATERIAL:	STRUCTU	RAL COMPOSITE LUN	/IBER			
Weyerhaeuser	1.55E Timber	rStrand LSL	(1) 1.75 X 5.5	DRY			

COL	UMN PR	OPERTIES									
Start (ft	:): 0 End (ft)	: 17.25 Me	ember Slope: 0/12 A	ctual Leng	gth (ft): 17.25						
	Area		Ix	ly		BSW	La	ms	Cfn		Kcr
	(in²)		(in⁴)	(in ⁴))	(lbf/ft)				Cr	eep Factor
	9.62		24.26	2.46	5	3.01		1	10.87		1
STR	ENGTH P	ROPERTIE	ES								
		Fb (psi)	Ft (psi)		Fv (psi)	Fc (psi)		Fc⊥(psi)	E (psi) x10 ³	Er	nin (psi) x10³
Base	Values	2325	1290		310	2170		900	1550		787.815
Adjusted	Values	2325	1290		310	2170		900	1550		788
	с _М	1	1		1	1		1	1		1
	с _т	1	1		1	1		1	1		1
Bending	g Adjustmen	t Factors	$C_V = 1.07 C_r = 1$	Volu	ime factor Is appl	ied on a load cor	mbination ba	isis And Is Not re	flected in the adju	sted valu	es
COL	UMN DA	TA									
			Unbraced Length	(ft)	Column End						
Span	Len	gth (ft)	Х	Y	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (Y Axis)
1	1	7.25	17.25	1	0	0.21	1.00	1.00	37.64	6.	86
PAS	S-FAIL										
			PASS/FAIL	M	AGNITUDE	STRENGTH	LOC	ATION (ft)	LOAD COMBO	DURAT	ION FACTOR CD
	Shear St	ress Y (psi)	PASS (97.0%)		9.4	310.0		17.25	D+L		1
	Bending St	ress Y (psi)	PASS (85.8%)		354.1	2486.4		8.62	D+L		1
	Def	lection (in)	PASS (67.7%)	0.3	71 (=L/558)	1.150 (=L/180)		8.62	L		
С	ompressive	Stress (psi)	PASS (28.9%)		317.1	445.7		0	D+L		1
	Bearing	Stress (psi)	PASS (99.5%)		9.9	2170.0		0	D+L		1
Bendi	ng-Compres	sion (Unit)	PASS (4.6%)		0.95	1.00		8.45	D+L		1
REA	CTIONS	Units for	V: lbf Units for M:	lbf-ft							
Z axis	DEAD	LIVE	LIVE ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
А	1052	2000	0	0	0	0	0	0	0	0	0
В	0	0	0	0	0	0	0	0	0	0	0
Y axis											
А	0	60	0	0	0	0	0	0	0	0	0
В	0	60	0	0	0	0	0	0	0	0	0
Reactio	n Location										
											B

LOAD LIST						
Туре	Left Magnitude	Right Magnitude	Load Start (ft)	Load End (ft)	Load Type	Direction
Point (lbf)	-1000	-	17.25	-	Dead	Z
Point (lbf)	-2000	-	17.25	-	Live	Z
Uniform (lbf/ft)	7	7	0	17.25	Live	Y
Self Weight (lbf/ft)	3.01	3.01	0	17.25	Dead	Z
3 ,						

NOTES

Ledger Calculations

		PROJECT NO.	SHEET NO.
	PROJECT	 	
ONE TWENTY® ENGINEERING & DESIGN	SUBJECT	DATE _	/ /

Table 12.3.3A Assigned Specific Gravities

Species Combination	Specific ¹ Gravity, G	Species Combinations of MSR and MEL Lumber	Specific ¹ Gravity, G
Alaska Cedar	0.47	Douglas Fir-Larch	
Alaska Hemlock	0.46	E=1,900,000 psi and lower grades of MSR	0.50
Alaska Spruce	0.41	E=2,000,000 psi grades of MSR	0.51
Alaska Yellow Cedar	0.46	E=2,100,000 psi grades of MSR	0.52
Aspen BEAMS (DE #2 and Engineered	0.39	E=2,200,000 psi grades of MSR	0.53
Balsam Fir	0.36	E=2,300,000 psi grades of MSR	0.54
Beech-Birch-Hickory	0.71	E=2,400,000 psi grades of MSR	0.55
Coast Sitka Spruce	0.39	Douglas Fir-Larch (North)	
Cottonwood	0.41	E=1,900,000 psi and lower grades of MSR and MEL	0.49
Douglas Fir-Larch	0.50	E=2,000,000 psi to 2,200,000 psi grades of MSR and MEL	0.53
Douglas Fir-Larch (North)	0.49	E=2,300,000 psi and higher grades of MSR and MEL	0.57
Douglas Fir-South	0.46	Douglas Fir-Larch (South)	
Eastern Hemlock	0.41	E=1,000,000 psi and higher grades of MSR	0.46
astem Hemlock-Balsam Fir	0.36	Engelmann Spruce-Lodgepole Pine	
Eastern Hemlock-Tamarack	0.41	E=1,400,000 psi and lower grades of MSR	0.38
Eastern Hemlock-Tamarack (North)	0.47	E=1,500,000 psi and higher grades of MSR	0.46
Eastern Softwoods Joists and 2x members (HE #	0.36	Hem-Fir	
Eastern Spruce	0.41	E=1,500,000 psi and lower grades of MSR	0.43
Eastern White Pine	0.36	E=1,600,000 psi grades of MSR	0.44
Engelmann Spruce-Lodgepole Pine	0.38	E=1.700.000 psi grades of MSR	0.45
Hem-Fir	0.43	E=1.800.000 psi grades of MSR	0.46
Hem-Fir (North)	0.46	E=1.900.000 psi grades of MSR	0.47
Mixed Maple	0.55	E=2 000 000 psi grades of MSR	0.48
dixed Oak	0.68	E=2 100 000 psi grades of MSR	0.49
dixed Southern Pine	0.51	E=2 200 000 psi grades of MSR	0.50
Jountain Hemlack	0.47	E=2 300 000 psi grades of MSR	0.51
Northern Pine	0.47	E=2,000,000 psi grades of MSR	0.52
Northern Red Oak	0.68	Hom-Fir (North)	0.52
Vortham Spacier	0.35	E-1 000 000 psi and higher and as of MSP and MEL	0.46
Sorthern White Cador	0.33	E=1,000,000 psi and inglief grades of MSR and MEL	0.40
Ponderosa Pine	0.43	E=1 700 000 nei and louver grades of MSB and ME1	0.55
Dideitosa i ne	0.45	E=1,00,000 psi and lower grades of MSR and MEL	0.57
red maple Pad Oak	0.58	E-1,000,000 psi and righer grades of MSK and MEL	347 CE 14.0
Acu Cak	0.67	Spruce-rine-rin	0.42
New Find Darksmand scheme sunder	0.44	E=1,700,000 psi and lower grades of MSK and MEL	0.46
Redwood, close grain	0.44	E=1,800,000 psi and 1,900,000 grades of MSR and MEL	0.50
Salas Cassian	0.37	E=2,000,000 psi and nigher grades of MSK and MEL	
Such a Disc	0.45	Space-rine-rif (South)	
Southern Pine	0.55	E=1,100,000 psi and lower grades of MSR	0.36
spruce-Pine-Pin	0.42	E=1,200,000 psi to1,900,000 psi grades of MSR	0.42
spruce-Pine-Fir (South)	0.36	E=2,000,000 psi and higher grades of MSR	0.50
Western Cedars	0.36	Western Cedars	0252735
Western Cedars (North)	0.35	E=1,000,000 psi and higher grades of MSR	0.36
Western Hemlock	0.47	Western Woods	
Western Hemlock (North)	0.46	E=1,000,000 psi and higher grades of MSR	0.36
Vestern White Pine	0.40		
Western Woods	0.36		
White Oak	0.73		
Yellow Poplar	0.43		

1. Specific gravity, G, based on weight and volume when oven-dry. Different specific gravities, G, are possible for different grades of MSR and MEL lumber (see Table 4C, Footnote 2).

		PROJECT NO.	SHEET NO.
	PROJECT	 	
ONE TWENTY [®] ENGINEERING & DESIGN	BY	DATE _	/ /

Table 12K LAG SCREWS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections1,2,3,4

U,

System a b b b b b b b b	(upuf used) (upuf	Seponds Seponds Seponds Seponds Seponds Seconds Seconds <
t, in, in, in, in, in, in, in, in, in, in	Z_L Z_II Ibs. Ibs. 90 130 110 170 110 170 100 140	Z_I Z_I Z_I lbs. lbs. lbs. 90 130 90 110 160 100 100 170 100
0.075 1/4 170 130 160 120 150 110 150 110 150 100 140 100 140 100 140 100 130 (14 gage) 5/16 220 160 200 140 190 130 190 130 190 130 180 120 180 120 170 3/8 220 160 200 140 200 130 190 130 190 130 190 130 190 120 180 120 170 0.105 1/4 180 140 170 150 200 140 200 140 190 130 190 130 190 130 190 120 180 0.120 1/4 190 150 180 130 170 120 160 120 160 110 150 180 0.120 1/4 190 150 18	90 130 110 170 110 170 100 140	90 130 90 110 160 100 100 170 100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	110 170 110 170 100 140	110 160 100 100 170 100
3/8 220 160 200 140 200 130 190 130 190 120 180 120 180 120 180 120 170 0.105 1/4 180 140 170 130 160 120 160 120 160 110 150 110 150 110 140 (12 gage) 5/16 230 160 210 140 200 130 200 130 190 130 190 120 180 0.120 1/4 190 150 180 130 170 120 160 120 180 130 190 130 190 130 190 130 190 130 190 130 190 130 190 130 180 130 170 120 160 140 180 130 170 120 160 130 190 130 180 140 180 13	110 170 100 140	100 170 100
0.105 1/4 180 140 170 130 160 120 160 110 150 110 150 110 150 110 150 110 140 (12 gage) 5/16 230 170 210 150 200 140 200 130 190 130 190 120 180 3/8 230 160 210 140 200 130 200 130 190 120 180 0.120 1/4 190 150 180 130 170 120 180 130 190 130 190 130 190 130 190 130 190 130 190 130 190 130 190 130 180 130 190 130 190 130 190 130 190 130 190 130 190 130 190 130 190 130 190 130 190 13	100 140	
(12 gage) 5/16 230 170 210 150 200 140 200 140 190 130 190 130 190 120 180 0.120 1/4 190 150 180 170 120 140 200 130 190 120 190 120 180 0.120 1/4 190 150 180 130 170 120 170 120 160 120 160 110 160 110 150 (11 gage) 5/16 230 170 220 150 210 140 200 140 190 130 190 120 180 0.134 1/4 200 150 180 140 180 170 120 140 200 130 200 130 190 120 180 0.134 1/4 200 150 180 170 150 210 140 200	440 470	100 140 90
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	110 170	110 170 110
0.120 1/4 190 150 180 130 170 120 170 120 160 120 160 110 160 110 160 110 160 110 160 110 160 110 160 110 150 180 (11 gage) 5/16 230 170 220 150 210 140 200 140 200 130 190 130 180 3/8 240 170 220 150 210 140 210 140 200 130 120 180 180 0.134 1/4 200 150 210 140 200 140 200 130 200 130 190 130 190 (10 gage) 5/16 240 170 220 150 220 140 210 140 200 130 200 130 190 130 180 0.179 1/4 <	110 180	110 170 110
(11 gage) 5/16 230 170 210 150 210 140 200 140 200 140 190 130 190 130 180 0.134 1/4 200 150 210 140 180 170 200 130 190 130 190 130 180 0.134 1/4 200 150 180 140 180 130 170 130 120 180 100 150 210 140 200 140 200 130 200 130 200 130 100 120 180 (10 gage) 5/16 240 180 120 160 210 140 200 130 200 130 190 130 190 0.179 1/4 220 170 210 150 200 160 230 150 220 150 210 150 210 150 220 150	100 150	100 140 100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	120 180	120 180 110
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	110 180	110 180 110
(10 gage) 5/16 240 180 220 160 210 140 200 140 200 130 200 130 190 3/8 240 170 220 150 220 140 210 140 200 130 200 130 190 0.179 1/4 220 170 210 150 200 140 210 140 190 130 190 130 190 (7 gage) 5/16 260 190 240 170 230 160 230 150 220 150 220 150 210 150 210 140 190 130 190 130 180 230 150 220 150 220 150 220 160 230 150 220 140 210 150 230 150 220 140 210 150 230 150 220 140 210 150 <t< td=""><td>110 150</td><td>100 150 100</td></t<>	110 150	100 150 100
3/8 240 170 220 150 220 140 210 140 210 140 200 130 200 130 190 0.179 1/4 220 170 210 150 200 150 200 140 190 140 190 130 190 130 180 (7 gage) 5/16 260 190 240 170 230 160 230 150 220 150 220 150 210 150 210 150 210 150 220 150 220 150 220 140 210 150 210 150 220 140 210 150 220 140 210 150 210 150 220 140 190 130 180 0.239 1/4 240 180 220 180 210 150 210 150 200 140 190 130 180 <	120 180	120 180 120
0.179 1/4 220 170 210 150 200 160 200 140 190 140 190 130 180 (7 gag) 5/16 260 190 240 170 230 160 230 150 220 150 220 150 220 150 220 140 210 3/8 270 190 250 170 240 160 230 150 220 140 210 150 230 150 220 140 220 140 210 150 230 150 220 140 210 150 230 150 220 140 210 150 230 150 220 140 190 140 190 140 190 130 180 (3 gage) 5/16 300 220 280 190 270 180 260 170 250 160 250 160 250	120 190	120 180 110
(7 gage) 5/16 260 190 240 170 230 160 230 150 220 150 220 150 210 3/8 270 190 250 170 240 160 240 160 230 150 220 150 220 140 210 0.239 1/4 240 180 220 160 210 150 200 140 190 140 210 130 180 (3 gage) 5/16 300 220 280 190 270 180 260 170 250 160 230 160 260 170 250 160 250 160 250 160 250 160 250 160 250 160 250 160 250 160 250 160 250 160 250 160 250 160 250 160 250 160 250 160 250 160 <	120 170	120 170 120
3/8 270 190 250 170 240 160 240 160 230 150 220 140 220 140 210 0.239 1/4 240 180 220 160 210 150 20 140 190 140 190 130 180 (3 gage) 5/16 300 220 280 190 270 180 260 170 250 160 250 160 230 3/8 310 220 280 190 270 180 260 170 250 160 250 160 230 7/16 420 290 390 260 380 240 370 240 360 230 350 220 350 240 330 1/2 510 340 470 300 460 290 450 280 440 270 430 260 420 260 400	130 200	130 200 130
0.239 1/4 240 180 220 160 210 150 200 140 190 140 190 130 180 (3 gage) 5/16 300 220 280 190 270 180 260 170 250 160 250 160 230 3/8 310 220 280 190 270 180 260 170 250 160 250 160 240 7/16 420 290 390 260 380 240 370 240 360 230 350 220 330 1/2 510 340 470 300 460 290 450 280 440 270 430 260 420 260 400	130 210	130 200 130
(3 gage) 5/16 300 220 280 190 270 180 260 170 250 160 250 160 230 3/8 310 220 280 190 270 180 270 180 260 170 250 160 250 160 240 7/16 420 290 390 260 380 240 370 240 360 230 350 220 350 240 330 1/2 510 340 470 300 460 290 450 280 440 270 430 260 420 260 400	120 180	120 180 120
3/8 310 220 280 190 270 180 270 180 260 170 250 160 250 160 240 7/16 420 290 390 260 380 240 370 240 360 230 350 220 350 220 330 1/2 510 340 470 300 460 290 450 280 440 270 430 260 420 260 400	150 230	150 230 140
1/16 4/20 290 390 260 330 240 370 240 360 230 350 220 350 220 350 220 350 220 350 220 350 220 350 20 30 40 40 40	140 230	140 230 140
1/2 510 340 470 300 480 290 450 280 440 270 430 280 420 260 400	200 330	200 320 190
	240 400	230 390 230
2/8 7/10 490 7/10 430 580 400 580 400 580 580 540 370 530 380 500	330 590	330 580 320
3/4 1110 6/0 1020 390 980 300 970 330 930 530 920 300 910 300 860	450 650	450 640 440
1 1 1040 1100 1750 960 1710 1710 910 1720 960 1250 950 1250 950 1250 950 1750 950 1770	740 1480	730 1460 710
	120 180	120 180 120
177 177 170 200 100 210 100 210 100 200 100 200 100 200 100 1	150 230	150 230 140
316 320 220 200 200 200 100 270 100 200 100 200 100 200 100 200 100 200 100 200	150 240	140 230 140
7/16 480 320 440 280 420 270 420 270 420 270 170 200 160 220 160 240	220 360	210 360 210
1/2 580 340 540 340 520 320 510 320 500 310 480 290 480 290 480		260 440 260
5/8 850 530 780 470 750 440 740 440 720 420 700 400 690 400 660	270 450	360 640 350
3/4 1200 730 1100 640 1060 600 1050 590 1020 570 990 540 980 530 930	370 650	480 900 470
7/8 1600 930 1470 820 1410 770 1400 750 1360 720 1320 680 1310 680 1240	270 450 370 650 490 920	620 1200 600
1 2040 1150 1870 1000 1800 950 1780 930 1730 900 1880 850 1660 840 1570	270 450 370 650 490 920 630 1220	760 1530 740

1. Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1).

Tabulated lateral design values, Z, shall be intripried by an appreciate adjustment lateral design values, I, and be intripried by an appreciate adjustment lateral value (1.5.1).
 Tabulated lateral design values, Z, are for "reduced body diameter" lag screws (see Appendix Table L2) inserted in side grain with screw axis perpendicular to wood fibers; screw penetration, p, into the main member equal to 8D; dowel bearing strengths, F_e, of 61,850 psi for ASTM A653, Grade 33 steel and 87,000 psi for ASTM A36 steel and screw bending yield strengths, F_{yin} of 70,000 psi for D = 1/4", 60,000 psi for D = 5/16", and 45,000 psi for D ≥3/8".
 Where the lag screw penetration, p, is less than 8D but not less than 4D, tabulated lateral design values, Z, shall be multiplied by p/8D or lateral design values.

shall be calculated using the provisions of 12.3 for the reduced penetration.
4. The length of lag screw penetration, p, not including the length of the tapered tip, E (see Appendix Table L2), of the lag screw into the main member shall not be less than 4D. See 12.1.4.6 for minimum length of penetration, p_{min}.

SDS connection of steel plate to wood, assuming HF, 100 lbs per 1/4" DIA SDS un-factored, without group action reduction, pending application/spacing.

			VOOD SO two mer or sawn lu tabulated yood scree	CREWS: R mber) Con umber or So lateral de	PROJ SUBJ BY Reference CL with boosign value	ECT _ ECT _	I Design V	/alues, Z	, for Sing	[le Shear	DATE _	/	/
		NG &	VOOD So two mer or sawn lu tabulated yood scree	CREWS: R mber) Con umber or So I lateral de	SUBJ BY Reference Intections CL with boosign value	ECT _	Design V	/alues, Z	, for Sing	[le Shear	DATE _	/	/
	E T\ NEERII	NG &	VOOD So two mer or sawn li tabulated yood scree	CREWS: R mber) Con umber or S I lateral de	BY	e Lateral s ^{1,2,3} oth membo	Design V	/alues, Z	, for Sing	[le Shear	DATE _	/	/
able	12L	V (1 (1	VOOD So two mer or sawn lu tabulated	CREWS: R mber) Con umber or S i lateral de	eferenc inection CL with bo	e Lateral s ^{1,2,3} oth members are calo	I Design V	/alues, Z	for Sing	le Shear			
able	12L	() fr	vood some or sawn lu tabulated vood scree	CREWS: R mber) Con umber or S I lateral de	CL with be sign value	e Lateral s ^{1,2,3} oth members are calo	I Design V	/alues, Z	for Sing	le Shear	*:		
				ew penetra	tion, p, int	o the main	ulated bas	ed on an a qual to 10	ic gravity issumed lo D)	ength of			MOO
Thickness	Wood Screw Diameter	Wood Screw Number	G≡0.67 Red Oak	G=0.55 Mixed Maple Southern Pine	G=0.5 Douglas Fir-Larch	G=0.49 Douglas Fir-Larch(N)	G=0.46 Douglas Fir(S) Hem-Fir(N)	G≐0.43 Hem-Fir	G=0.42 Spruce-Pine-Fir	G=0.37 Redwood (open grain)	G=0.36 Eastern Softwoods Spruce-Pine-Fir(S) Western Cedars Western Woods	G=0.35 Northern Species	D SCF
t,	D	5 Ge	lbs	lbs	lbs	lbs	lbe	lbs	lbs	lbs	lhe	lbs	~
1/2	0.138	6 7	88 96	67 74	59 65	57 63	53 59	49 54	47	41 45	40 44	38 42	<
	0.164	8	107 121	82 94	73 83	71 81	66 76	61 70	59 68	51 59	50 58	48 56	10
	0.190	10 12	130	101 123	90 110	87 107	82 100	75 93	73 91	64 79	63 78	60 75	91
5/8	0.138	6	94	76	66	64	59	53	52 56	44	43	41	
	0.164	8	120	92 103	80	77 88	72	65 74	63 72	54	53	51	
	0.190	10	146	111	97	94	88	80	78	67	65	63 77	
3/4	0.242	14	184	142	126	123	115	106	103	89	87	84	-
	0.151	7	104	87	80	77	71	64	62	52	50	48	VOC
	0.177	9	142	114	99	96	88	80	78	66	64	61	VEL
pical L	_edger col	nnection	w/ SDS, un-fa	actored since typ	ical Deck loadi	ng application w	/ith duration = 1.	03	100	86	84	80	-TY
3) SDS	W screws 60 psf LL	into RII and 10	VI @ 12" o.c st psf DL - loadii	tud. Assuming wo	orst case with ? ection, stagger	12' deck framing ed, (and ignorin	with connection g capacity of typi	s into	61	55	54	51	PE
o.c w/	nnection i	s 6' x 72	2 psf x 1.00 =	432# versus cap	acity into DF/E	Engineered lum	per (LSL) - 489#,	ok. 50	78	67	65	62 70	FAS
o.c w/ m). Co	1 9.111	10	153	128	117	114	108	101	97	81	78	75	TE
o.c w/ m). Co	0.190	12	213	161	147	143	131	126	114	102	100	95	NEF
o.c w/ m). Co	0.190 0.216 0.242	14		79	72 80	71 78	67 74	63 69	61 68	55 60	54 59	52 57	St
o.c w/ m). Co 1-1/4	0.190 0.216 0.242 0.138 0.151	14 6 7	94 104	0/	92	90 106	85 100	80 94	78 92	70 82	68 80	66 78	5.F
o.c w/ m). Co 1-1/4	0.190 0.216 0.242 0.138 0.151 0.164 0.177	14 6 7 8 9	94 104 120 142	101 118	108		108	101	99	88	87	84	
o.c w/ m). Co	0.190 0.216 0.242 0.138 0.151 0.164 0.177 0.190 0.216	14 6 7 8 9 10 12	94 104 120 142 153 193	101 118 128 161	108 117 147	114	137	128	100000	100	105	100	12
o.c w/ n). Co 1-1/4	0.190 0.216 0.242 0.138 0.151 0.164 0.177 0.190 0.216 0.242 0.138	14 6 7 8 9 10 12 14 6	94 104 120 142 153 193 213 94	101 118 128 161 178 79	108 117 147 163 72	114 144 159 71	137 151 67	128 141 63	138	115	105 111 54	100 106 52	12

0.242 Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1).
 Tabulated lateral design values, Z, are for rolled thread wood screws (see Appendix Table L3) inserted in side grain with screw axis perpendicular to wood fibers; screw penetration, p, into the main member equal to 10D; and screw bending yield strengths, F_{ybs} of 100,000 psi for 0.099" ≤ D ≤ 0.142", 90,000 psi for 0.142" < D ≤ 0.177", 80,000 psi for 0.177" < D ≤ 0.236", and 70,000 psi for 0.236" < D ≤ 0.273".
 Where the wood screw penetration, p, is less than 10D but not less than 6D, tabulated lateral design values, Z, shall be multiplied by p/10D or lateral design values.

0.177

0 190

0.216

0.242

0.138

0.151

0.164

0.177

0.190

0.216

1-3/4

shall be calculated using the provisions of 12.3 for the reduced penetration.

Interior: Typical Ledger connection w/ SDS, un-factored since typical floor loading application with duration = 1. Minimum (3) SDSW screws into studs/rim @ 16" o.c stud. Assuming worst case with 14' floor framing with connections into RIM @ 16" o.c w/ 40 psf LL and 12 psf DL - loading on each connection, staggered, (and ignoring capacity of typical nailing of rim). Connection is 7' x 52 psf x 1.00 = 364# versus capacity into HF lumber (SS) - 423#, ok.

		PROJECT NO.	SHEET NO.
	PROJECT		
ONGITUDE	SUBJECT		
ONE TWENTY [®] ENGINEERING & DESIGN	BY	DATE _	/ /
ONE TWENTY° ENGINEERING & DESIGN	PROJECT SUBJECT BY	DATE _	/ /

Table 12.2A	Lag Screw Reference Withdrawal Design Values, W ¹

Tabulated withdrawal design values (W) are in pounds per inch of thread penetration into side grain of wood member. Length of thread penetration in main member shall not include the length of the tapered tip (see 12.2.1.1).

Specific Gravity,					Lag Sci	ew Diam	eter, D				
G ²	1/4"	5/16"	3/8"	7/16"	1/2"	5/8"	3/4"	7/8"	1"	1-1/8"	1-1/4"
0.73	397	469	538	604	668	789	905	1016	1123	1226	1327
0.71	381	450	516	579	640	757	868	974	1077	1176	1273
0.68	357	422	484	543	600	709	813	913	1009	1103	1193
0.67	349	413	473	531	587	694	796	893	987	1078	1167
0.58	281	332	381	428	473	559	641	719	795	869	940
0.55	260	307	352	395	437	516	592	664	734	802	868
0.51	232	274	314	353	390	461	528	593	656	716	775
0.50	225	266	305	342	378	447	513	576	636	695	752
0.49	218	258	296	332	367	434	498	559	617	674	730
0.47	205	242	278	312	345	408	467	525	580	634	686
0.46	199	235	269	302	334	395	453	508	562	613	664
0.44	186	220	252	283	312	369	423	475	525	574	621
0.43	179	212	243	273	302	357	409	459	508	554	600
0.42	173	205	235	264	291	344	395	443	490	535	579
0.41	167	198	226	254	281	332	381	428	473	516	559
0.40	161	190	218	245	271	320	367	412	455	497	538
0.39	155	183	210	236	261	308	353	397	438	479	518
0.38	149	176	202	227	251	296	340	381	422	461	498
0.37	143	169	194	218	241	285	326	367	405	443	479
0.36	137	163	186	209	231	273	313	352	389	425	460
0.35	132	156	179	200	222	262	300	337	373	407	441
0.31	110	130	149	167	185	218	250	281	311	339	367

Tabulated withdrawal design values, W, for lag screw connections shall be multiplied by all applicable adjustment factors (see Table 11.3.1).
 Specific gravity, G, shall be determined in accordance with Table 12.3.3A.

12.2.3.2 For calculation of the fastener reference withdrawal design value in pounds, the unit reference withdrawal design value in lbs/in. of fastener penetration from 12.2.3.1 shall be multiplied by the length of fastener penetration, p_{t_s} into the wood member.

12.2.3.3 The reference withdrawal design value, in lbs/in. of penetration, for a single post-frame ring shank nail driven in the side grain of the main member, with the nail axis perpendicular to the wood fibers, shall be determined from Table 12.2D or Equation 12.2-4, with-in the range of specific gravities and nail diameters given in Table 12.2D. Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Table 11.3.1) to obtain adjusted withdrawal design values, W'.

12.2.3.4 For calculation of the fastener reference withdrawal design value in pounds, the unit reference withdrawal design value in lbs/in. of ring shank penetration from 12.2.3.3 shall be multiplied by the length of ring shank penetration, p_t , into the wood member. 12.2.3.5 Nails and spikes shall not be loaded in

withdrawal from end grain of wood (C_{eg} =0.0).

12.2.3.6 Nails, and spikes shall not be loaded in withdrawal from end-grain of laminations in cross-laminated timber (C_{eg} =0.0).

12.2.4 Drift Bolts and Drift Pins

Reference withdrawal design values, W, for connections using drift bolt and drift pin connections shall be determined in accordance with 11.1.1.3.

W = 180	0 G ² D	(12.2-4)	be
	Ledger withdrawal capacity - a	assuming minimum 1 1/	2"
	embed (tip discounted) into S	S/HF material = 179# x	1.5 x
	3 = 805# per 16" of ledger cor	nnection (maximum utiliz	zed)

DOWEL-TYPE FASTENERS

		TL /EN 3 & DE			PRO SUB BY _	JECT				PROJE	CT NO.		HEET NO.
REWS	Table 1	2M	for (ta	OOD SCR wo memb r sawn lum abulated la ood screw	tEWS: Re ber) Conn aber or SCI ateral desi penetrati	ference ections ¹ L with AST ign values on, p, into	Lateral D ,2,3 M 653, Gr are calcul the main n)esign Va ade 33 str ated base nember eq	eel side pl d on an as ual to 10[for Single late ssumed ler D)	e Shear		
D SCF	Side Member Thickness	Wood Screw Diameter	Wood Screw Number	G=0.67 Red Oak	G=0.55 Mixed Maple Southern Pine	G=0.5 Douglas Fir-Larch	G=0.49 Douglas Fir-Larch(N)	G=0.46 Douglas Fir(S) Hem-Fir(N)	G=0.43 Hem-Fir	G=0.42 Spruce-Pine-Fir	G=0.37 Redwood (open grain)	G=0.36 Eastern Softwoods Spruce-Pine-Fir(S) Western Cedars Western Woods	G≡0.35 Northern Species
00	t _s in. 0.036 (20 gage)	D in. 0.138 0.151 0.164	6 7 8	lbs. 89 99 113	lbs. 76 84 97	lbs. 70 78 89 71	lbs. 69 76 87	lbs. 66 72 83 67	lbs. 62 68 78	lbs. 60 67 77 61	lbs. 54 60 69	lbs. 53 59 67	bs. 52 57 66
	(18 gage) 0.060 (16 gage)	0.151 0.164 0.138 0.151 0.164	7 8 6 7 8	100 114 92 101 116	85 98 79 87 100	79 90 73 81 92	77 89 72 79 90	74 84 68 75 86	69 79 64 71 81	68 78 63 70 79	61 70 57 63 71	60 69 56 61 70	58 67 54 60 68
	0.075 (14 gage)	0.177 0.190 0.138 0.151 0.164 0.177 0.190 0.216	9 10 6 7 8 9 10 12	130 146 95 105 119 139 150	116 125 82 90 103 119 128 159	107 116 76 84 95 110 119	105 114 75 82 93 108 117 145	100 108 71 78 89 103 111 138	94 102 67 74 84 97 105	93 100 66 72 82 95 103 127	83 90 59 65 74 86 92	82 88 58 64 73 84 91	79 86 57 62 71 82 88
	0.105 (12 gage)	0.242 0.138 0.151 0.164 0.177 0.190	14 6 7 8 9 10	204 104 114 129 148 160	175 90 99 111 128 138	162 84 92 103 119 128	158 82 90 102 116 125	151 79 86 97 111 120	142 74 81 92 105 113	139 73 80 90 103 111	125 66 72 81 93 100	123 65 71 80 91 98	120 63 69 77 89 96
	0.120 (11 gage)	0.216 0.242 0.138 0.151 0.164 0.177 0.190 0.216 0.242	12 14 6 7 8 9 10 12 14	196 213 110 120 135 154 166 202 219	168 183 95 104 117 133 144 174 189	156 170 89 97 109 124 133 162 175	153 167 87 95 107 121 131 159 172	140 159 83 91 102 116 125 152 164	138 150 79 86 96 110 118 143 155	135 147 77 84 94 107 116 140 152	122 132 70 76 85 97 104 126 137	120 130 68 75 84 95 103 124 134	116 126 67 73 82 93 100 121 131
	0.134 (10 gage)	0.138 0.151 0.164 0.177 0.190 0.216	6 7 8 9 10 12	116 126 141 160 173 209	100 110 122 139 149 180	93 102 114 129 139 167	92 100 112 127 136 164	88 96 107 121 130 157	83 91 101 114 123 148	81 89 99 112 121 145	73 80 89 101 109 131	72 79 88 100 107 129	70 77 86 97 104 126
	0.179 (7 gage)	0.242 0.138 0.151 0.164 0.177 0.190	14 6 7 8 9 10	226 126 139 160 184 198	195 107 118 136 160 172	181 99 109 126 148 159	97 107 123 145 156	169 92 102 117 138 149	160 86 95 110 129 140	157 84 93 108 127 137	141 76 84 96 113 122	139 74 82 95 111 120	135 72 80 92 108 117
	0.239 (3 gage)	0.216 0.242 0.138 0.151 0.164 0.177 0.190 0.216	12 14 6 7 8 9 10 12	234 251 126 139 160 188 204 256 256	203 217 107 118 136 160 173 218	202 99 109 126 148 159 201	198 97 107 123 145 156 197	178 190 92 102 117 138 149 187	179 86 95 110 129 140 176	176 84 93 108 127 137 172	149 159 76 84 96 113 122 154	146 156 74 82 95 111 120 151	143 152 72 80 92 108 117 147

Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.5.1).
 Tabulated lateral design values, Z, are for rolled thread wood screws (see Appendix L) inserted in side grain with screw axis perpendicular to wood fibers; screw penetration, p, into the main member equal to 10D; dowel bearing strength, F_s, of 61,850 psi for ASTM A653, Grade 33 steel and screw bending yield strengths, F_s, of 100,000 psi for 0.099" ≤ D ≤ 0.142", 90,000 psi for 0.142" < D ≤ 0.177", 80,000 psi for 0.177" < D ≤ 0.236", 70,000 psi for 0.236" < D ≤ 0.273".
 Where the wood screw penetration, p, is less than 10D but not less than 6D, tabulated lateral design values, Z, shall be multiplied by p/10D or lateral design values shall be calculated using the provisions of 12.3 for the reduced penetration.

		L.					_			PRO	JECT I	NO.	SHE	ET N
~// \ \ \ \				_	PRO	JECI								
				E	SUB	JECT	·							
NGINEE	RING	LINI & DESI	Y - GN		BY _						_ DA	ATE	/	/
Table 1 (Cont.)	12P	CO Val for (tak per	MM lues saw bulat	ON, BO) , Z, for s n lumber ted later ation, p, in	C, or SINK Single Sh or SCL wi al design nto the ma	(ER STEE lear (two ith ASTM values are ain memb	L WIRE I membe 653, Grac e calculat er equal t	NAILS: Re r) Conne le 33 stee ed based o 10D)	eference tions ^{1,2,3} el side pla on an ass	Lateral ite sumed len	Design	a T	- 200	
Side Member Thickness	Nail Diameter	Common Wire Nail Box Nail	Sinker Nail	G=0.67 Red Oak	G=0.55 Mixed Maple Southern Pine	G=0.5 Douglas Fir-Larch	G=0.49 Douglas Fir-Larch (N)	G=0.46 Douglas Fir (S) Hem-Fir (N)	G=0.43 Hem-Fir	G=0.42 Spruce-Pine-Fir	G=0.37 Redwood (open grain)	G=0.36 Eastern Softwoods Spruce-Pine-Fir(5) Western Cedans Western Woods	G=0.35 Northern Species	. 01
t, in. 0.120	D in. 0.099	Pennywe	ight 7d	ibs. 90	lbs. 78	lbs. 72	lbs. 71	lbs.	lbs. 64	lbs.	lbs. 57	lbs. 56	Ibs. 53	-92
(11 gage)	0.113	6d 8d	8d 10d	110 121	95 105	89 97	87 96	83 91	79 86	77 85	70 76	68 75	66 73	
	0.128 0.131 0.135	10d 8d 16d	12d	134 140 147	116 121 127	108 112 118	106 110 116	101 105 110	96 99 104	94 97 102	85 88 92	83 86 91	81 84 88	
	0.148	10d 20d 16d 40d	16d	165 193	143 166	133 154	130 152	124 145	117 137	115 134	104 121	102 119	99 115	
	0.192	20d 30d	30d 40d	216 226 244	195 210	181	177	169	159	156	141	134 138 149	135	Ê
0.134	0.225	40d 50d 6d	60d	265 272 95	228 234 82	211 217 76	207 213 74	198 203 71	186 191 66	183 187 65	164 169 58	161 166 56	157 161 54	-
(10 gage)	0.113	6d 8d	8d 10d	116 127	100 110	93 102	92 100	88 96	83 91	81 89	73 80	72 79	69 76	
	0.128 0.131 0.135	10d 8d 16d	12d	140 146 153	122 126 132	113 117 123	111 115 121	106 110 115	100 104 109	98 102 107	92 96	90 95	85 88 92	MOC
	0.148	10d 20d 16d 40d	16d	172 199	148 172	138 160	135 157	129 150	122 142	120 139	108 125	106 123	104 120	E
	0.192	20d 30d	30d 40d	232 249	200 215	186	182 196	174	164 176	161 173	145	143 153	139 149	YPE
0.179	0.225	40d 50d	60d	270 277 97	233 239 82	216 221 76	212 217 74	202 207 71	191 195 66	187 192 65	168 173 58	165 170 56	161 165 54	FAS
(7 gage)	0.113	6d 8d	8d 10d	126 142	107 121	99 111	97 109	92 104	86 97	84 95	76	74 83	70 79	TEN
	0.128	10d 8d 16d	12d	161 168 175	137 144 152	126 132 141	124 130 138	118 123 131	111 116 123	108 114 121	97 102 108	94 99 105	90 94	ERS
	0.148	10d 20d 16d 40d	16d	195 224	170 194	158 180	155 177	148 169	140 160	137 157	123 142	121 140	117 136	
	0.177 0.192 0.207	20d	20d 30d 40d	249 256 272	215 222 236	200 206 219	197 203 215	188 194 205	178 183 194	174 179 190	157 162 172	155 159 169	151 155 164	12
	0.225	40d 50d	60d	292 299	252 258	234 240	230 235	220 225	207 212	203 208	184 188	180 185	176 180	46 20
0.239 (3 gage)	0.099	6d 6d 8d	7d 8d	97 126 142	82 107 121	76 99	74 97 109	71 92 104	66 86 97	65 84 95	58 76 85	56 74 83	54 70 79	Ĩ.
	0.128	10d 8d	100	161 169	137	126 132	124	118	111 116	108 114	97 102	94 99	90 94	
	0.135	16d 10d 20d	12d 16d	180 205 245	153 174 209	141 160	138 157	131 149 170	123 140	121 137	108 123	105 121	100 117	2
	0.102	00 400	20d	284	241 251	222 231	218	207	195	191	170	167 174	162 169	
	0.192	200	000											

Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1).
 Tabulated lateral design values, Z, are for common, box, or sinker steel wire nails (see Appendix Table L4) inserted in side grain with nail axis perpendicular to wood fibers; nail penetration, p, into the main member equal to 10D; dowel bearing strength, F, of 61.850 psi for ASTM A653, Grade 33 steel and nail bending yield strengths, F, so of 100,000 psi for 0.099" ≤ D ≤ 0.142", 90,000 psi for 0.142" < D ≤ 0.177", 80,000 psi for 0.177" < D ≤ 0.236", 70,000 psi for 0.236" < D ≤ 0.273".
 Where the nail or spike penetration, p, is less than 10D but not less than 6D, tabulated lateral design values, Z, shall be multiplied by p/10D or lateral design values shall be calculated using the provisions of 12.3 for the reduced penetration.

		PROJECT NO.	SHEET NO.
KICH	PROJECT		
LONGITUDE	SUBJECT		
ONE TWENTY [®] ENGINEERING & DESIGN	BY	 DATE _	/ /

Table 11.3.6A Group Action Factors, Cg' for Bolt or Lag Screw Connections with Wood Side Members²

For D = 1", s = 4", E = 1,400,000 psi													
A_s/A_m^{-1}	A_s^1				Nu	mber of	f fastend	ers in a	row				
	in. ²	2	3	4	5	6	7	8	9	10	11	12	
0.5	5	0.98	0.92	0.84	0.75	0.68	0.61	0.55	0.50	0.45	0.41	0.38	
	12	0.99	0.96	0.92	0.87	0.81	0.76	0.70	0.65	0.61	0.57	0.53	
	20	0.99	0.98	0.95	0.91	0.87	0.83	0.78	0.74	0.70	0.66	0.62	
	28	1.00	0.98	0.96	0.93	0.90	0.87	0.83	0.79	0.76	0.72	0.69	
	40	1.00	0.99	0.97	0.95	0.93	0.90	0.87	0.84	0.81	0.78	0.75	
	64	1.00	0.99	0.98	0.97	0.95	0.93	0.91	0.89	0.87	0.84	0.82	
1	5	1.00	0.97	0.91	0.85	0.78	0.71	0.64	0.59	0.54	0.49	0.45	
	12	1.00	0.99	0.96	0.93	0.88	0.84	0.79	0.74	0.70	0.65	0.61	
	20	1.00	0.99	0.98	0.95	0.92	0.89	0.86	0.82	0.78	0.75	0.71	
	28	1.00	0.99	0.98	0.97	0.94	0.92	0.89	0.86	0.83	0.80	0.77	
	40	1.00	1.00	0.99	0.98	0.96	0.94	0.92	0.90	0.87	0.85	0.82	
	64	1.00	1.00	0.99	0.98	0.97	0.96	0.95	0.93	0.91	0.90	0.88	
1. Where A	A _m > 1.0, u	ise A _m /A _s a	and use A,	" instead o	f A _s .								

2. Tabulated group action factors (Cg) are conservative for $D \le 1$ ", $s \le 4$ ", or $E \ge 1,400,000$ psi.

Table 11.3.6B Group Action Factors, Cg, for 4" Split Ring or Shear Plate Connectors with Wood Side Members²

s = 9", E = 1,400,000 psi													
A_s/A_m^{-1}	A _s ¹				Nu	mber of	fasten	ers in a	row				
	in. ²	2	3	4	5	6	7	8	9	10	11	12	
0.5	5	0.90	0.73	0.59	0.48	0.41	0.35	0.31	0.27	0.25	0.22	0.20	
	12	0.95	0.83	0.71	0.60	0.52	0.45	0.40	0.36	0.32	0.29	0.27	
	20	0.97	0.88	0.78	0.69	0.60	0.53	0.47	0.43	0.39	0.35	0.32	
	28	0.97	0.91	0.82	0.74	0.66	0.59	0.53	0.48	0.44	0.40	0.37	
	40	0.98	0.93	0.86	0.79	0.72	0.65	0.59	0.54	0.49	0.45	0.42	
	64	0.99	0.95	0.91	0.85	0.79	0.73	0.67	0.62	0.58	0.54	0.50	
1	5	1.00	0.87	0.72	0.59	0.50	0.43	0.38	0.34	0.30	0.28	0.25	
	12	1.00	0.93	0.83	0.72	0.63	0.55	0.48	0.43	0.39	0.36	0.33	
	20	1.00	0.95	0.88	0.79	0.71	0.63	0.57	0.51	0.46	0.42	0.39	
	28	1.00	0.97	0.91	0.83	0.76	0.69	0.62	0.57	0.52	0.47	0.44	
	40	1.00	0.98	0.93	0.87	0.81	0.75	0.69	0.63	0.58	0.54	0.50	
	64	1.00	0.98	0.95	0.91	0.87	0.82	0.77	0.72	0.67	0.62	0.58	

1. Where $A_y/A_m > 1.0$, use A_m/A_s and use A_m instead of A_s .

2. Tabulated group action factors (C_8) are conservative for 2-1/2" split ring connectors, 2-5/8" shear plate connectors, s < 9", or E > 1,400,000 psi.

		PROJECT NO.	SHEET NO.
ONE TWENTY [®] ENGINEERING & DESIGN	SUBJECT	DATE _	/ /

Side Plates ¹ For D = 1", s = 4", E _{wood} = 1,400,000 psi, E _{steel} = 30,000,000 psi												
	in. ²	2	3	4	5	6	7	8	9	10	11	12
12	5	0.97	0.89	0.80	0.70	0.62	0.55	0.49	0.44	0.40	0.37	0.34
	8	0.98	0.93	0.85	0.77	0.70	0.63	0.57	0.52	0.47	0.43	0.40
	16	0.99	0.96	0.92	0.86	0.80	0.75	0.69	0.64	0.60	0.55	0.52
	24	0.99	0.97	0.94	0.90	0.85	0.81	0.76	0.71	0.67	0.63	0.59
	40	1.00	0.98	0.96	0.94	0.90	0.87	0.83	0.79	0.76	0.72	0.69
	64	1.00	0.99	0.98	0.96	0.94	0.91	0.88	0.86	0.83	0.80	0.77
	120	1.00	0.99	0.99	0.98	0.96	0.95	0.93	0.91	0.90	0.87	0.85
	200	1.00	1.00	0.99	0.99	0.98	0.97	0.96	0.95	0.93	0.92	0.90
18	5	0.99	0.93	0.85	0.76	0.68	0.61	0.54	0.49	0.44	0.41	0.37
	8	0.99	0.95	0.90	0.83	0.75	0.69	0.62	0.57	0.52	0.48	0.44
	16	1.00	0.98	0.94	0.90	0.85	0.79	0.74	0.69	0.65	0.60	0.56
	24	1.00	0.98	0.96	0.93	0.89	0.85	0.80	0.76	0.72	0.68	0.64
	40	1.00	0.99	0.97	0.95	0.93	0.90	0.87	0.83	0.80	0.77	0.73
	64	1.00	0.99	0.98	0.97	0.95	0.93	0.91	0.89	0.86	0.83	0.81
	120	1.00	1.00	0.99	0.98	0.97	0.96	0.95	0.93	0.92	0.90	0.88
	200	1.00	1.00	0.99	0.99	0.98	0.98	0.97	0.96	0.95	0.94	0.92
24	40	1.00	0.99	0.97	0.95	0.93	0.89	0.86	0.83	0.79	0.76	0.72
	64	1.00	0.99	0.98	0.97	0.95	0.93	0.91	0.88	0.85	0.83	0.80
	120	1.00	1.00	0.99	0.98	0.97	0.96	0.95	0.93	0.91	0.90	0.88
	200	1.00	1.00	0.99	0.99	0.98	0.98	0.97	0.96	0.95	0.93	0.92
30	40	1.00	0.98	0.96	0.93	0.89	0.85	0.81	0.77	0.73	0.69	0.65
	64	1.00	0.99	0.97	0.95	0.93	0.90	0.87	0.83	0.80	0.77	0.73
	120	1.00	0.99	0.99	0.97	0.96	0.94	0.92	0.90	0.88	0.85	0.83
	200	1.00	1.00	0.99	0.98	0.97	0.96	0.95	0.94	0.92	0.90	0.89
35	40	0.99	0.97	0.94	0.91	0.86	0.82	0.77	0.73	0.68	0.64	0.60
	64	1.00	0.98	0.96	0.94	0.91	0.87	0.84	0.80	0.76	0.73	0.69
	120	1.00	0.99	0.98	0.97	0.95	0.92	0.90	0.88	0.85	0.82	0.79
	200	1.00	0.99	0.99	0.98	0.97	0.95	0.94	0.92	0.90	0.88	0.86
42	40	0.99	0.97	0.93	0.88	0.83	0.78	0.73	0.68	0.63	0.59	0.55
	64	0.99	0.98	0.95	0.92	0.88	0.84	0.80	0.76	0.72	0.68	0.64
	120	1.00	0.99	0.97	0.95	0.93	0.90	0.88	0.85	0.81	0.78	0.75
	200	1.00	0.99	0.98	0.97	0.96	0.94	0.92	0.90	0.88	0.85	0.83
50	40	0.99	0.96	0.91	0.85	0.79	0.74	0.68	0.63	0.58	0.54	0.51
	64	0.99	0.97	0.94	0.90	0.85	0.81	0.76	0.72	0.67	0.63	0.59
	120	1.00	0.98	0.97	0.94	0.91	0.88	0.85	0.81	0.78	0.74	0.71
	200	1.00	0.99	0.98	0.96	0.95	0.92	0.90	0.87	0.85	0.82	0.79

		PROJECT NO.	SHEET NO.
LONGITUDE	SUBJECT		
ONE TWENTY [®] ENGINEERING & DESIGN	BY	DATE _	/ /

		S =	= 9", E	wood = 1	,400,00	0 psi, E	$L_{\text{steel}} = 3$	0,000,0	00 psi			
A _m /A _s	Am				Nu	mber of	fasten	ers in a	row			
	in. ²	2	3	4	5	6	7	8	9	10	11	12
12	5	0.91	0.75	0.60	0.50	0.42	0.36	0.31	0.28	0.25	0.23	0.21
	8	0.94	0.80	0.67	0.56	0.47	0.41	0.36	0.32	0.29	0.26	0.24
	16	0.96	0.87	0.76	0.66	0.58	0.51	0.45	0.40	0.37	0.33	0.31
	24	0.97	0.90	0.82	0.73	0.64	0.57	0.51	0.46	0.42	0.39	0.35
	40	0.98	0.94	0.87	0.80	0.73	0.66	0.60	0.55	0.50	0.46	0.43
	64	0.99	0.96	0.91	0.86	0.80	0.74	0.69	0.63	0.59	0.55	0.51
	120	0.99	0.98	0.95	0.91	0.87	0.83	0.79	0.74	0.70	0.66	0.63
	200	1.00	0.99	0.97	0.95	0.92	0.89	0.85	0.82	0.79	0.75	0.72
18	5	0.97	0.83	0.68	0.56	0.47	0.41	0.36	0.32	0.28	0.26	0.24
	8	0.98	0.87	0.74	0.62	0.53	0.46	0.40	0.36	0.32	0.30	0.27
	16	0.99	0.92	0.82	0.73	0.64	0.56	0.50	0.45	0.41	0.37	0.34
	24	0.99	0.94	0.87	0.78	0.70	0.63	0.57	0.51	0.47	0.43	0.39
	40	0.99	0.96	0.91	0.85	0.78	0.72	0.66	0.60	0.55	0.51	0.47
	64	1.00	0.97	0.94	0.89	0.84	0.79	0.74	0.69	0.64	0.60	0.56
	120	1.00	0.99	0.97	0.94	0.90	0.87	0.83	0.79	0.75	0.71	0.67
	200	1.00	0.99	0.98	0.96	0.94	0.91	0.89	0.86	0.82	0.79	0.76
24	40	1.00	0.96	0.91	0.84	0.77	0.71	0.65	0.59	0.54	0.50	0.46
	64	1.00	0.98	0.94	0.89	0.84	0.78	0.73	0.68	0.63	0.58	0.54
	120	1.00	0.99	0.96	0.94	0.90	0.86	0.82	0.78	0.74	0.70	0.66
	200	1.00	0.99	0.98	0.96	0.94	0.91	0.88	0.85	0.82	0.78	0.75
30	40	0.99	0.93	0.86	0.78	0.70	0.63	0.57	0.52	0.47	0.43	0.40
	64	0.99	0.96	0.90	0.84	0.78	0.71	0.66	0.60	0.56	0.51	0.48
	120	0.99	0.98	0.94	0.90	0.86	0.81	0.76	0.71	0.67	0.63	0.59
	200	1.00	0.98	0.96	0.94	0.91	0.87	0.83	0.79	0.76	0.72	0.68
35	40	0.98	0.91	0.83	0.74	0.66	0.59	0.53	0.48	0.43	0.40	0.36
	64	0.99	0.94	0.88	0.81	0.73	0.67	0.61	0.56	0.51	0.47	0.43
	120	0.99	0.97	0.93	0.88	0.82	0.77	0.72	0.67	0.62	0.58	0.54
	200	1.00	0.98	0.95	0.92	0.88	0.84	0.80	0.76	0.71	0.68	0.64
42	40	0.97	0.88	0.79	0.69	0.61	0.54	0.48	0.43	0.39	0.36	0.33
	64	0.98	0.92	0.84	0.76	0.69	0.62	0.56	0.51	0.46	0.42	0.39
	120	0.99	0.95	0.90	0.85	0.78	0.72	0.67	0.62	0.57	0.53	0.49
	200	0.99	0.97	0.94	0.90	0.85	0.80	0.76	0.71	0.67	0.62	0.59
50	40	0.95	0.86	0.75	0.65	0.56	0.49	0.44	0.39	0.35	0.32	0.30
	64	0.97	0.90	0.81	0.72	0.64	0.57	0.51	0.46	0.42	0.38	0.35
	120	0.98	0.94	0.88	0.81	0.74	0.68	0.62	0.57	0.52	0.48	0.45

TYPICAL POSTS

DAT	: 3/3/2021		COMPANY:	L120	Engineering & Desig	n, LLC			
VITRUVIUS BUILD	: StruCalc		DESIGNED BY:	Man	s Thurfjell				
CUSTOME	:	REVIEWED BY:			Mans Thurfjell				
PROJECT LOCATION	:								
	,								
LEVE	.: Roof		LOADING:	ASD					
LOCATION	: 2X4 STU	D @ 16"	CODE:	2018	2018 International Building Code				
TYP		l	NDS:	2018	NDS	-			
MATERIA	: SOLID SA	WN							
Hem-Fir	No. 2	(1) 1.5 X 3.5	DRY						

2X4 STUD @ 16" DIAGRAM

CO	LUMN PROP	ERTIES									
Start (f	ft): 0 End (ft): 8	Membe	r Slope: 0/12 Act	ual Length (f	t): 8						
	Area		lx	ly		BSW	Lar	ns	G		Kcr
	(in²)		(in ⁴)	(in⁴)		(lbf/ft)				Cı	reep Factor
	5.25		5.36	0.98		1.04	1		0.43		1
STR	RENGTH PRO	PERTIE	S								
		Fb (psi)	Ft (p	si)	Fv (psi)	Fc (psi)		Fc⊥(psi)	E (psi) x10 ³	Er	min (psi) x10³
Bas	e Values	850	52	5	150	1300		405	1300		470
Adjusted	d Values	1275	788	3	150	1495		405	1300		470
	с _м	1	1		1	1		1	1		1
	ст	1	1		1	1		1	1		1
	c _i	1	1		1	1		1	1		1
	C _F	1.5	1.5		1	1.15		1	1		1
Bendin	ng Adjustment Fa	ctors	C _{fu} = 1 C _r = 1								
CO	LUMN DATA										
			Unbraced Leng	gth (ft)	Column End						
Span	Length	(ft)	х	Y	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d ((Y Axis)
1	8		8	4	0	0.24	1.00	1.00	27.43	3	32
PAS	SS-FAIL										
			PASS/FAIL	MA	GNITUDE	STRENGTH	LOC	ATION (ft)	LOAD COMBO	DURAT	ION FACTOR C
	Deflect	tion (in)	PASS (90.5%	0.025	5 (=L/3795)	0.267 (=L/360)		8	L		
(Compressive Stre	ess (psi)	PASS (3.0%)		344.4	355.2		0	D+L		1
DE	CTIONIC										
	ACTIONS	Units for V	/: lbf Units for	M: lbf-ft			65161416		165		EADT!!
Z axis	DEAD	LIVE	LIVE ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
A	8	1800	0	0	0	0	0	0	0	0	0
_ B	0	0	0	0	0	0	0	0	0	0	0
Reactio	on Location										
А											B
LOA	AD LIST										
	Туре	Left	Magnitude	Right Mag	Initude	Load Start (ft)	Load	End (ft)	Load Type		Direction
	Point (lbf)		-1800	-		8		-	Live		Z
Self	Weight (lbf/ft)		1.04	1.04	1	0		8	Dead		Z
	_										
NO	TES										

	DATE:	10/8/2020)	COMPANY:	L120	L120 Engineering & Design, LLC				
VITRUVIUS B	BUILD:	StruCalc		DESIGNED BY:	Mans Thurfjell					
CUSTO	OMER:			REVIEWED BY:	Man	s Thurfjell				
PROJECT LOCA	TION:									
		,								
	LEVEL:	Main Floo	or	LOADING:	ASD					
LOCA	ATION:	2x4 @ 12'	' o.c.	CODE:	2018	International Buildin	g Code			
	TYPE:	COLUMN		NDS:	2018	NDS				
MAT	ERIAL:	SOLID SA	WN							
Hem-Fir	No.	2	(1) 1.5 X 3.5	DRY						

2x4 @ 12" o.c. DIAGRAM

CO	UUMN PRO	PERTIES									
Start	(ft): 0 End (ft):	9 Memb	per Slope: 0/12 Ac	tual Length	(ft): 9	2014			<u> </u>		14
	Area		IX	ly		BSW	Lai	ns	G		Kcr
	(in²)		(in ⁴)	(in*)		(lbf/ft)				Cr	eep Factor
	5.25		5.36	0.98		1.04	1		0.43		1
ST	RENGTH PR	OPERTIE	S								
		Fb (psi)	Ft (psi)	Fv (psi)	Fc (psi)	1	Fc⊥(psi)	E (psi) x10 ³	En	nin (psi) x10³
Ba	se Values	850	525		150	1300		405	1300	-	470
Adjuste	ed Values	1275	788		150	1495		405	1300		470
	с _м	1	1		1	1		1	1		1
	с _т	1	1		1	1		1	1		1
	c _i	1	1		1	1		1	1		1
	C _F	1.5	1.5		1	1.15		1	1		1
Bendi	ng Adjustment	Factors	C _{fu} = 1 C _r = 1								
<u> </u>		^									
		A	11	h. (fa)	Column End						
<u>,</u>			Unbraced Lengt	n (π)	Column End	<u> </u>			K 1 / 1 0/ A · · ·		
Span	Leng	th (ft)	<u>x</u>	ř	Offset	CP	Ke(X AXIS)	Ke(Y AXIS)	KeL/d (X Axis)	KeL/d (Y AXIS)
I		9	9	2	0	0.25	1.00	1.00	30.86	I	6
PA	SS-FAIL										
			PASS/FAIL	MA	GNITUDE	STRENGTH	LOC	ATION (ft)	LOAD COMBO	DURAT	ION FACTOR C
	Defle	ection (in)	PASS (89.7%)	0.031	(=L/3495)	0.300 (=L/360)	1	9	L		
	Compressive St	tress (psi)	PASS (1.8%)		373.2	379.9		0	D+L		1
	Tensile S	tress (psi)	PASS (100.0%)		0.0	708.8		9	D		0.9
RF	ACTIONS	V-(lbf)	M-(lbf-ft)								
Z axis	DEAD	LIVE	LIVE ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
Δ	9	1950	0	0	0	0	0	0	0	0	0
B	0	0	0	0	0	0	0	0	0	0	0
React	ion Location	Ŭ	Ũ	Ū	Ū	Ŭ	U	Ũ	Ū	Ū	Ū
licuct	ion Location										
Α											E
LO	AD LIST										
	Туре	Lef	t Magnitude	Right Mag	nitude	Load Start (ft)	Load	l End (ft)	Load Type		Direction
	Point (lbf)		-1950	-		9		-	Live		Z
Self	f Weight (lbf/ft)		1.04	1.04		0		9	Dead		Z
	<u> </u>										
	DTES										

VITRUVIUS CUS PROJECT LOC	DATE: 5 BUILD: 5TOMER: CATION:	3/3/2021 StruCalc		COMPANY: DESIGNED BY: REVIEWED BY:	L120 Man Man	L120 Engineering & Design, LLC Mans Thurfjell Mans Thurfjell			
LO	LEVEL: CATION: TYPE:	Roof (2) 2x4 (u COLUMN	nbraced) WN	LOADING: CODE: NDS:	ASD 2018 2018	B International Buildin B NDS	g Code		
Hem-Fir	. 2	(2) 1.5 X 3.5	DRY						

CO	LUMN PROP	ERTIES										
Start ((ft): 0 End (ft): 8	Member	Slope: 0/	'12 Actua	l Length (ft): 8						
	Area		lx		ly		BSW	Lar	ns	G		Kcr
	(in²)		(in⁴)		(in⁴)		(lbf/ft)				Cro	eep Factor
	10.5		10.72		1.97		2.07	2	2	0.43		1
ST	RENGTH PRC	PERTIE	S									
		Fb (psi)		Ft (psi)		Fv (psi)	Fc (psi)		Fc⊥(psi)	E (psi) x10 ³	Em	nin (psi) x10³
Ba	se Values	850		525		150	1300		405	1300		470
Adjuste	ed Values	1275		788		150	1495		405	1300		470
	с _М	1		1		1	1		1	1		1
	с _т	1		1		1	1		1	1		1
	c _i	1		1		1	1		1	1		1
	с _F	1.5		1.5		1	1.15		1	1		1
Bendi	ng Adjustment Fa	actors (² fu = 1	C _r = 1								
CO	UMN DATA											
			Unbrac	ed Length	(ft)	Column End						
Span	Length	(ft)	Х		Y	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (Y Axis)
1	8		8		8	0	0.14	1.00	1.00	27.43	32	2
ÞΔ	SS-EAII											
			DACC	/FAU			CTDENCTU	100			DUDAT	
	Deflec	tion (in)	PASS (96 0%)	0.011			LUCA		LUAD COMBO	DUKATI	ION FACTOR CD
	Compressive Stre	ess (nsi)	PASS	(0.9%)	0.011	(=L/9144)	0.267 (=L/360)		8			1
	compressive surv	c33 (p3i)	IAUU			211.1	215.1		0	D+L		1
RE	ACTIONS	Units for V	/: lbf Ui	nits for M:	lbf-ft							
Z axis	DEAD	LIVE	LIVE F	ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
Α	717	1500	C)	0	0	0	0	0	0	0	0
В	0	0	C)	0	0	0	0	0	0	0	0
React	ion Location											
A												В
LO	Type	left	Magnitud	ما	Right Mag	nitude	Load Start (ft)	Load	End (ft)	Load Type		Direction
	Point (lbf)	Leit	-1500		ingin mag	intauc	8	2000		Livo		7
	Point (Ibf)		- 1500		-		0		-	Doad		2
Cold	f Woight (lbf/ft)		2.07		-	,	0		9	Dead		7
Sell			2.07		2.07		U		U	Deau		2
NC	DTES											

D VITRUVIUS BL CUSTOI PROJECT LOCAT	DATE: JILD: MER: TON:	3/3/2021 StruCalc		COMPANY: DESIGNED BY: REVIEWED BY:	L120 Man Man	L120 Engineering & Design, LLC Mans Thurfjell Mans Thurfjell			
LE LOCAT T MATE	EVEL: FION: TYPE: RIAL:	Roof (3) 2x4 (u COLUMN SOLID SA	nbraced) WN	LOADING: CODE: NDS:	ASD 2018 2018	International Buildin NDS	g Code		
Hem-Fir	. 2	(3) 1.5 X 3.5	DRY						

CC	LUMN PROP	ERTIES										
Start	(ft): 0 End (ft): 8	Membe	r Slope: 0/	'12 Actua	l Length (ft)	: 8						
	Area		lx		ly		BSW	Lar	ns	G		Kcr
	(in²)		(in ⁴)		(in⁴)		(lbf/ft)				Cr	eep Factor
	15.75		16.08		2.95		3.11	3		0.43		1
ST	RENGTH PRC	PERTIE	S									
		Fb (psi)		Ft (psi)		Fv (psi)	Fc (psi)		Fc⊥(psi)	E (psi) x10 ³	En	nin (psi) x10³
Ва	se Values	850		525		150	1300		405	1300		470
Adjuste	ed Values	1275		788		150	1495		405	1300		470
	с _М	1		1		1	1		1	1		1
	с _т	1		1		1	1		1	1		1
	с _і	1		1		1	1		1	1		1
	C _F	1.5		1.5		1	1.15		1	1		1
Bendi	ng Adjustment Fa	actors (C _{fu} = 1	C _r = 1								
CC	UMN DATA											
			Unbrac	ed Length	(ft)	Column End						
Span	Length	(ft)	х		Y	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (Y Axis)
1	8		8		8	0	0.29	1.00	1.00	27.43	21.	33
D۸	SS-EAII											
			DACC				CTRENCTU	100			DUDAT	
	Dofloc	tion (in)	PASS (93 0%)	NIAC		STREINGTH	LUCA		LUAD COMBO	DURAT	ION FACTOR CD
	Compressive Stre	non (m)	PASS ((3.7%)	0.019	(=L/5107)	0.267 (=L/360)		8	L		1
	compressive stre	ess (psi)	FAJJ	(3.7 /0)		414.3	430.1		0	D+L		I
RE	ACTIONS	Units for \	/: lbf Ui	nits for M:	lbf-ft							
Z axis	DEAD	LIVE	LIVE F	ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
Α	2525	4000	C)	0	0	0	0	0	0	0	0
В	0	0	C)	0	0	0	0	0	0	0	0
React	ion Location											
_												
LO	AD LIST											D
	Туре	Left	Magnitud	le	Right Mag	nitude	Load Start (ft)	Load	End (ft)	Load Type		Direction
	Point (lbf)		-4000				8		-	Live		Z
	Point (lbf)		-2500		-		8		-	Dead		Z
Sel	f Weight (lbf/ft)		3.11		3.11		0		8	Dead		Z

VITRUVIU CUS PROJECT LO	DATE: S BUILD: STOMER: CATION:	3/3/2021 StruCalc		COMPANY: DESIGNED BY: REVIEWED BY:	L120 Man Man	Engineering & Desig Is Thurfjell Is Thurfjell	ın, LLC
LO	LEVEL: CATION: TYPE: ATERIAL:	Roof (4) 2x4 (L COLUMN SOLID SA	Inbraced) WN	LOADING: CODE: NDS:	ASD 2018 2018	International Buildin NDS	ng Code
Hem-Fir	No	o. 2	(4) 1.5 X 3.5	DRY			

CO	LUMN PROP	ERTIES									
Start ((ft): 0 End (ft): 8	Member	Slope: 0/12 Actu	al Length (f	t): 8						
	Area		lx	ly		BSW	Lar	ns	G	I	Kcr
	(in²)		(in⁴)	(in ⁴)		(lbf/ft)				Creep	o Factor
	21		21.44	3.94		4.14	4		0.43		1
ST	RENGTH PRC	PERTIES									
		Fb (psi)	Ft (psi)	Fv (psi)	Fc (psi)		Fc⊥(psi)	E (psi) x10 ³	Emin	(psi) x10 ³
Bas	se Values	850	525		150	1300		405	1300		470
Adjuste	ed Values	1275	788		150	1495		405	1300		470
	с _М	1	1		1	1		1	1		1
	с _т	1	1		1	1		1	1		1
	с _і	1	1		1	1		1	1		1
	с _ғ	1.5	1.5		1	1.15		1	1		1
Bendi	ng Adjustment Fa	actors C	_{fu} = 1 C _r = 1								
CO	LUMN DATA										
			Unbraced Lengt	h (ft)	Column End						
Span	Length	(ft)	х	Y	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (Y A	xis)
1	8		8	8	0	0.32	1.00	1.00	27.43	16	
PA	SS-FAIL										
			PASS/FAII	МА	GNITUDE	STRENGTH	100	ATION (ft)		DURATION	N FACTOR CD
	Deflec	tion (in)	PASS (92.7%)	0.019	(=1/4975)	0.267 (=1/360)	200	8	1	Donutiioi	
	Compressive Stre	ess (psi)	PASS (3.5%)	0.015	454.0	470.3		0	D+L		1
RE	ACTIONS	Units for V	: lbf Units for N	1: lbf-ft							
Z axis	DEAD	LIVE	LIVE ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
Α	4033	5500	0	0	0	0	0	0	0	0	0
В	0	0	0	0	0	0	0	0	0	0	0
React	ion Location										
Δ											B
ĹO	AD LIST										
	Туре	Left	Magnitude	Right Mag	gnitude	Load Start (ft)	Load	End (ft)	Load Type		Direction
	Point (lbf)		-4000	-		8		-	Dead		Z
	Point (lbf)		-5500	-		8		-	Live		Z
Self	f Weight (lbf/ft)		4.14	4.14	4	0		8	Dead		Z
	DTES										

DATE:	10/9/2020)	COMPANY:	L120	Engineering & Desig	n. LLC
VITRUVIUS BUILD:	StruCalc		DESIGNED BY:	Man	s Thurfjell	
CUSTOMER:			REVIEWED BY:	Man	s Thurfjell	
PROJECT LOCATION:						
	,					
LEVEL:	Main Floo	or	LOADING:	ASD		
LOCATION:	2x6 stud		CODE:	2018	International Buildin	ig Code
TYPE:	COLUMN		NDS:	2018	NDS	-
MATERIAL:	SOLID SA	WN				
Hem-Fir N	lo. 2	(1) 1.5 X 5.5	DRY			

2x6 stud DIAGRAM

CO	LUMN PROP	PERTIES										
Start ((ft): 0 End (ft):	9 Meml	ber Slope:	0/12 Act	ual Length ((ft): 9						
	Area		lx		ly		BSW	Lar	ns	G		Kcr
	(in²)		(in⁴)		(in⁴)		(lbf/ft)				Cr	eep Factor
	8.25		20.8		1.55		1.63	1		0.43		1
ST	RENGTH PRO	OPERTI	ES									
		Fb (psi)		Ft (psi)		Fv (psi)	Fc (psi)		Fc⊥(psi)	E (psi) x10 ³	Er	nin (psi) x10³
Bas	se Values	850		525		150	1300		405	1300		470
Adjuste	d Values	1105		682		150	1430		405	1300		470
	с _М	1		1		1	1		1	1		1
	с _т	1		1		1	1		1	1		1
	c _i	1		1		1	1		1	1		1
	C _F	1.3		1.3		1	1.1		1	1		1
Bendi	ng Adjustment F	actors	C _{fu} = 1	C _r = 1								
CO	LUMN DAT	A										
			Unbra	ced Length	n (ft)	Column End						
Span	Lengtl	h (ft)	х		Y	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (Y Axis)
1	9		9		2	0	0.56	1.00	1.00	19.64	1	6
PA	SS-FAIL											
			PAS	S/FAIL	MAG	GNITUDE	STRENGTH	LOC	ATION (ft)	LOAD COMBO	DURAT	ION FACTOR CE
	Defle	ction (in)	PASS	(88.3%)	0.035	(=L/3068)	0.300 (=L/360)		9	L		
	Compressive Str	ress (psi)	PASS	6 (1.2%)		789.7	799.3		0	D+L		1
рг				6 .)								
RE/	ACTIONS	V-(IDT)	IVI-(IDT-1		CNOW				CEICANC		DAIN	
	DEAD	LIVE	LIVE	ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
A	3015	3500		0	0	0	0	0	0	0	0	0
_ B	0	0		0	0	0	0	0	0	0	0	0
Reacti	on Location											
A												В
LO	AD LIST											
	Туре	Let	ft Magnitu	ıde	Right Mag	nitude	Load Start (ft)	Load	l End (ft)	Load Type		Direction
	Point (lbf)		-3500		-		9		-	Live		Z
	Point (lbf)		-3000		-		9		-	Dead		Z
Self	Weight (lbf/ft)		1.63		1.63		0		9	Dead		Z
NC	TES											

DAT VITRUVIUS BUILI CUSTOME PROJECT LOCATIOI	E: 3/3/2021 9: StruCalc 8: 1:		COMPANY: DESIGNED BY: REVIEWED BY:	L120 Man Man	Engineering & Desig Is Thurfjell Is Thurfjell	n, LLC
LEVE LOCATIO TYF MATERIA	, Roof I: (2) 2x6 (I E: COLUMN .: SOLID SA	Jnbraced) I NWN	LOADING: CODE: NDS:	ASD 2018 2018	International Buildin NDS	g Code
Hem-Fir No. 2		(2) 1.5 X 5.5	DRY			

CC	DLUMN PROP	ERTIES										
Start	(ft): 0 End (ft): 8	Membe	r Slope: 0,	/12 Actua	l Length (ft	: 8						
	Area		Ix		ly		BSW	Lar	ns	G		Kcr
	(in²)		(in⁴)		(in ⁴)		(lbf/ft)				Cre	ep Factor
	16.5		41.59		3.09		3.26	2		0.43		1
ST	RENGTH PRO	PERTIE	S									
		Fb (psi)		Ft (psi)		Fv (psi)	Fc (psi)		Fc⊥(psi)	E (psi) x10 ³	Em	iin (psi) x10 ³
Ba	ise Values	850		525		150	1300		405	1300		470
Adjust	ed Values	1105		682		150	1430		405	1300		470
	с _М	1		1		1	1		1	1		1
	с _т	1		1		1	1		1	1		1
	c _i	1		1		1	1		1	1		1
	C _F	1.3		1.3		1	1.1		1	1		1
Bend	ing Adjustment Fa	actors	C _{fu} = 1	C _r = 1								
CC	DLUMN DATA											
			Unbrac	ed Length	(ft)	Column End						
Span	Length	(ft)	Х		Υ	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (Y	(Axis)
1	8		8		8	0	0.15	1.00	1.00	17.45	32	2
P۵	SS-FAII											
			DAC	/EA11	МАС			100				
	Deflec	tion (in)	PASS	96.6%)	0 000	(-1/10668)	0.267 (-1./360)	2007			DOILAIN	ONTACIÓN CD
	Compressive Str	ess (psi)	PASS	(2.2%)	0.009	207 6	212 4		0	D+1		1
		()				207.0	212.4		0			
RE	ACTIONS	Units for \	/: lbf U	nits for M:	lbf-ft							
Z axis	5 DEAD	LIVE	LIVE F	ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
Α	1426	2000	()	0	0	0	0	0	0	0	0
В	0	0	()	0	0	0	0	0	0	0	0
React	ion Location											
_												R
ĹC	AD LIST											D
	Туре	Left	Magnitud	le	Right Mag	nitude	Load Start (ft)	Load	End (ft)	Load Type		Direction
	Point (lbf)		-1400		-		8		-	Dead		Z
	Point (lbf)		-2000		-		8		-	Live		Z
Sel	f Weight (lbf/ft)		3.26		3.26		0		8	Dead		Z
NIC												

DA VITRUVIUS BUI CUSTOM PROJECT LOCATIC	ATE: 3 LD: 9 ER: DN:	3/3/2021 StruCalc		COMPANY: DESIGNED BY: REVIEWED BY:	L120 Man Man	Engineering & Desig Is Thurfjell Is Thurfjell	n, LLC
LE\ LOCATIO TY MATERI	/EL: F DN: ('PE: (AL: 9	Roof (3) 2x6 (U COLUMN SOLID SA	nbraced) WN	LOADING: CODE: NDS:	ASD 2018 2018	International Buildin NDS	g Code
Hem-Fir No. 2		2	(3) 1.5 X 5.5	DRY			

CO	LUMN PROF	PERTIES										
Start	(ft): 0 End (ft): 8	Membe	r Slope: 0/	12 Actua	l Length (ft)	: 8						
	Area		lx		ly		BSW	Lar	ns	G		Kcr
	(in²)		(in⁴)		(in ⁴)		(lbf/ft)				Cre	ep Factor
	24.75		62.39		4.64		4.88	3		0.43		1
ST	RENGTH PRO	OPERTIE	S									
		Fb (psi)		Ft (psi)		Fv (psi)	Fc (psi)		Fc⊥(psi)	E (psi) x10 ³	Em	in (psi) x10³
Ba	se Values	850		525		150	1300		405	1300		470
Adjuste	ed Values	1105		682		150	1430		405	1300		470
	с _М	1		1		1	1		1	1		1
	с _т	1		1		1	1		1	1		1
	c _i	1		1		1	1		1	1		1
	C _F	1.3		1.3		1	1.1		1	1		1
Bendi	ng Adjustment Fa	actors (^C fu = 1	C _r = 1								
CO	UMN DATA											
			Unbrac	ed Length	(ft)	Column End						
Span	Length	ı (ft)	Х		Y	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (Y	' Axis)
1	8		8		8	0	0.30	1.00	1.00	17.45	21.3	3
PA	SS-FAIL											
			PASS	/FAIL	MAG	SNITUDE	STRENGTH	LOC	ATION (ft)	LOAD COMBO	DURATI	ON FACTOR CD
	Deflec	tion (in)	PASS (93.3%)	0.018	(=L/5364)	0.267 (=L/360)		8	L		
	Compressive Str	ess (psi)	PASS	(4.7%)	4	405.6	425.6		0	D+L		1
рг				· · · · · · · · · · · · · · · · · · ·								
Z axis	DEAD	LIVE	LIVE R	NITS FOR IM: ROOF	SNOW	WIND +	WIND -	SEISMIC +	SEISMIC -	ICE	RAIN	EARTH
А	4039	6000	0)	0	0	0	0	0	0	0	0
В	0	0	0)	0	0	0	0	0	0	0	0
React	ion Location											
_												B
LO	AD LIST											D
	Туре	Left	Magnitud	le	Right Mag	nitude	Load Start (ft)	Load	End (ft)	Load Type		Direction
	Point (lbf)		-4000		-		8		-	Dead		Z
	Point (lbf)		-6000		-		8		-	Live		Z
Self	f Weight (lbf/ft)		4.88		4.88		0		8	Dead		Z

DATE: 3/3/2021 VITRUVIUS BUILD: StruCalc CUSTOMER: PROJECT LOCATION:				COMPANY: DESIGNED BY: REVIEWED BY:	L120 Man Man	Engineering & Desig s Thurfjell s Thurfjell	n, LLC
LEY LOCATIO TY MATER	/EL: R ON: (4 /PE: C AL: S	Roof 4) 2x6 (U COLUMN SOLID SAN	nbraced) WN	LOADING: CODE: NDS:	ASD 2018 2018	International Buildin NDS	g Code
Hem-Fir No. 2			(4) 1.5 X 5.5	DRY			

CO	LUMN PROP	PERTIES										
Start	(ft): 0 End (ft): 8	Membe	er Slope: 0	/12 Actual	Length (ft):	: 8						
	Area		lx		ly		BSW	Lai	ns	G		Kcr
	(in²)		(in⁴)		(in ⁴)		(lbf/ft)				Cro	eep Factor
	33		83.19		6.19		6.51	4	ļ	0.43		1
ST	RENGTH PRC	OPERTIE	S									
		Fb (psi)		Ft (psi)		Fv (psi)	Fc (psi)		Fc⊥(psi)	E (psi) x10 ³	Em	nin (psi) x10 ³
Ba	se Values	850		525		150	1300		405	1300		470
Adjuste	ed Values	1105		682		150	1430		405	1300		470
	с _м	1		1		1	1		1	1		1
	с _т	1		1		1	1		1	1		1
	c _i	1		1		1	1		1	1		1
	C _F	1.3		1.3		1	1.1		1	1		1
Bendi	ng Adjustment Fa	actors	C _{fu} = 1	C _r = 1								
CC	UMN DATA											
			Unbra	ced Length (ft)	Column End						
Span	Length	ı (ft)	Х		Y	Offset	СР	Ke(X Axis)	Ke(Y Axis)	KeL/d (X Axis)	KeL/d (Y Axis)
1	8		8		8	0	0.43	1.00	1.00	17.45	16	6
PA	SS-FAIL											
			PAS	S/FAIL	MAG	NITUDE	STRENGTH	LOC	ATION (ft)	LOAD COMBO	DURAT	ION FACTOR CD
	Deflec	tion (in)	PASS	(91.6%)	0.022 (=L/4286)	0.267 (=L/360)		8	L		
	Compressive Str	ess (psi)	PASS	(10.1%)	5	47.0	608.6		0	D+L		1
DE	ACTIONIC											
Z avis		Units for	V:lbt U	Inits for M: I	bf-ft SNOW	WIND +	WIND -	SFISMIC +	SEISMIC -	ICE	RAIN	FARTH
Δ	8052	10000		0	0	0	0	0	0	0	0	0
В	0	0		0	0	0	0	0	0	0	0	0
React	ion Location	-		-	-	-	-	-	-	-	-	-
A												В
LO	AD LIST					•. •			- 1.65			
	Туре	Lef	t Magnitu	de l	Right Magn	itude	Load Start (ft)	Load	End (ft)	Load Type		Direction
	Point (lbf)		-8000		-		8		-	Dead		Z
	Point (lbf)		-10000		-		8		-	Live		Z
Self	f Weight (lbf/ft)		6.51		6.51		0		8	Dead		Z
NC	DTES											

PASSED

Level, 4x4 POST (10FT) 1 piece(s) 4 x 4 Douglas Fir-Larch No. 2

Post Height: 10'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	34	50	Passed (69%)		
Compression (lbs)	4500	4710	Passed (96%)	1.15	1.0 D + 1.0 S
Base Bearing (lbs)	4500	396900	Passed (1%)		1.0 D + 1.0 S
Bending/Compression	N/A	1	Passed (N/A)		N/A

Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

Supports	Туре		Material	
Base	Plate		Steel	
Max Unbraced Length			Comments	
Full Member Length		No bracing assumed.		

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

	Dead	Snow	
Vertical Load	(0.90)	(1.15)	Comments
1 - Point (lb)	2000	2500	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Kenny Jones
L120 Engineering
(817) 727-2136
kiones@l120enaineerina.com

PASSED

Level, 4x4 POST (9FT) 1 piece(s) 4 x 4 Douglas Fir-Larch No. 2

Post Height: 9'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	31	50	Passed (62%)		
Compression (lbs)	5500	5727	Passed (96%)	1.15	1.0 D + 1.0 S
Base Bearing (lbs)	5500	396900	Passed (1%)		1.0 D + 1.0 S
Bending/Compression	N/A	1	Passed (N/A)		N/A

Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

Supports	upports Type		Material		
Base	Plate		Steel		
Max Unbraced Length			Comments		
Full Member Length		No bracing assumed.			

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

	Dead	Snow	
Vertical Load	(0.90)	(1.15)	Comments
1 - Point (lb)	2000	3500	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kiones@l120engineering.com	

PASSED

Level, 4x6 POST (10FT) 1 piece(s) 4 x 6 Douglas Fir-Larch No. 2

Post Height: 10'

1

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	34	50	Passed (69%)		
Compression (lbs)	7000	7380	Passed (95%)	1.15	1.0 D + 1.0 S
Base Bearing (lbs)	7000	623700	Passed (1%)		1.0 D + 1.0 S
Bending/Compression	N/A	1	Passed (N/A)		N/A

Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

Supports	Туре		Material	
Base	Plate		Steel	
Max Unbraced Length			Comments	
Full Member Length		No bracing assumed.		

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

	Dead	Snow	
Vertical Load	(0.90)	(1.15)	Comments
1 - Point (lb)	3000	4000	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kiones@l120engineering.com	

Level, 4x6 POST (9FT) 1 piece(s) 4 x 6 Douglas Fir-Larch No. 2

Post Height: 9'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	31	50	Passed (62%)		
Compression (lbs)	8500	8966	Passed (95%)	1.15	1.0 D + 1.0 S
Base Bearing (lbs)	8500	623700	Passed (1%)		1.0 D + 1.0 S
Bending/Compression	N/A	1	Passed (N/A)		N/A

Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

Supports	Туре		Material	
Base	Plate		Steel	
Max Unbraced Length			Comments	
Full Member Length		No bracing assumed.		

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

	Dead	Snow	
Vertical Load	(0.90)	(1.15)	Comments
1 - Point (lb)	4000	4500	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operat	or
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kiones@l120engineering.com	

PASSED

Level, 4x8 POST (10FT) 1 piece(s) 4 x 8 Douglas Fir-Larch No. 2

Post Height: 10'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	34	50	Passed (69%)		
Compression (lbs)	9500	9698	Passed (98%)	1.15	1.0 D + 1.0 S
Base Bearing (lbs)	9500	822150	Passed (1%)		1.0 D + 1.0 S
Bending/Compression	N/A	1	Passed (N/A)		N/A

Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

Supports	Туре		Material	
Base	Plate		Steel	
Max Unbraced Length			Comments	
Full Member Length		No bracing assumed.		

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

	Dead	Snow	
Vertical Load	(0.90)	(1.15)	Comments
1 - Point (lb)	4500	5000	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB So	ftware Operator
Kenny Jones	
L120 Engineeri	ng
(817) 727-2130	5
kiones@l120er	aineerina.com

Level, 4x8 POST (9FT) 1 piece(s) 4 x 8 Douglas Fir-Larch No. 2

Post Height: 9'

1

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	31	50	Passed (62%)		
Compression (lbs)	11000	11769	Passed (93%)	1.15	1.0 D + 1.0 S
Base Bearing (lbs)	11000	822150	Passed (1%)		1.0 D + 1.0 S
Bending/Compression	N/A	1	Passed (N/A)		N/A

• Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

Supports	Туре		Material		
Base	Plate		Steel		
Max Unbraced Length			Comments		
Full Member Length		No bracing assumed.			

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

	Dead	Snow	
Vertical Load	(0.90)	(1.15)	Comments
1 - Point (lb)	5000	6000	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kiones@l120engineering.com	

PASSED

Level, 6x6 POST (10FT) 1 piece(s) 6 x 6 Douglas Fir-Larch No. 2

Post Height: 10'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	22	50	Passed (44%)		
Compression (lbs)	16500	16897	Passed (98%)	1.15	1.0 D + 1.0 S
Base Bearing (lbs)	16500	980100	Passed (2%)		1.0 D + 1.0 S
Bending/Compression	N/A	1	Passed (N/A)		N/A

Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

Supports	Туре		Material	
Base	Plate		Steel	
Max Unbraced Length			Comments	
Full Member Length		No bracing assumed.		

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

	Dead	Snow	
Vertical Load	(0.90)	(1.15)	Comments
1 - Point (lb)	8000	8500	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Kenny Jones
L120 Engineering
(817) 727-2136
kiones@l120enaineerina.com

PASSED

Level, 6x6 POST (9FT) 1 piece(s) 6 x 6 Douglas Fir-Larch No. 2

Post Height: 9'

1

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	20	50	Passed (39%)		
Compression (lbs)	18000	18529	Passed (97%)	1.15	1.0 D + 1.0 S
Base Bearing (lbs)	18000	980100	Passed (2%)		1.0 D + 1.0 S
Bending/Compression	N/A	1	Passed (N/A)		N/A

Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

Supports	Туре		Material		
Base	Plate		Steel		
Max Unbraced Length			Comments		
Full Member Length		No bracing assumed.			

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

	Dead	Snow	
Vertical Load	(0.90)	(1.15)	Comments
1 - Point (Ib)	9000	9000	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Kenny Jones
L120 Engineering
(817) 727-2136
kiones@l120engineering.com

PASSED

Level, 6x8 POST (10FT) 1 piece(s) 6 x 8 Douglas Fir-Larch No. 2

Post Height: 10'

1

				-	
Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	22	50	Passed (44%)		
Compression (lbs)	22000	23041	Passed (95%)	1.15	1.0 D + 1.0 S
Base Bearing (lbs)	22000	1336500	Passed (2%)		1.0 D + 1.0 S
Bending/Compression	N/A	1	Passed (N/A)		N/A

Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

Supports	Туре		Material		
Base	Plate		Steel		
Max Unbraced Length			Comments		
Full Member Length		No bracing assumed.			

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

	Dead	Snow	
Vertical Load	(0.90)	(1.15)	Comments
1 - Point (lb)	11000	11000	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Kenny Jones
L120 Engineering
(817) 727-2136
kjones@l120engineering.com

Level, 6x8 POST (9FT) 1 piece(s) 6 x 8 Douglas Fir-Larch No. 2

Post Height: 9'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	20	50	Passed (39%)		
Compression (lbs)	24000	25267	Passed (95%)	1.15	1.0 D + 1.0 S
Base Bearing (lbs)	24000	1336500	Passed (2%)		1.0 D + 1.0 S
Bending/Compression	N/A	1	Passed (N/A)		N/A

Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

Supports	Туре		Material		
Base	Plate		Steel		
Max Unbraced Length			Comments		
Full Member Length		No bracing assumed.			

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

	Dead	Snow	
Vertical Load	(0.90)	(1.15)	Comments
1 - Point (Ib)	11000	13000	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kiones@l120engineering.com	

Level, 3.5X3.5 PSL (10FT) 1 piece(s) 3 1/2" x 3 1/2" 1.8E Parallam® PSL

Post Height: 10'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	34	50	Passed (69%)		
Compression (lbs)	7500	7626	Passed (98%)	1.15	1.0 D + 1.0 S
Base Bearing (lbs)	7500	396900	Passed (2%)		1.0 D + 1.0 S
Bending/Compression	N/A	1	Passed (N/A)		N/A

Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

Supports	Туре		Material		
Base	Plate		Steel		
Max Unbraced Length			Comments		
Full Member Length		No bracing assumed.			

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

	Dead	Snow	
Vertical Load	(0.90)	(1.15)	Comments
1 - Point (lb)	3500	4000	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kiones@l120engineering.com	

Level, 3.5X3.5 PSL (9FT) 1 piece(s) 3 1/2" x 3 1/2" 1.8E Parallam® PSL

Post Height: 9'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	31	50	Passed (62%)		
Compression (lbs)	9250	9338	Passed (99%)	1.15	1.0 D + 1.0 S
Base Bearing (lbs)	9250	396900	Passed (2%)		1.0 D + 1.0 S
Bending/Compression	N/A	1	Passed (N/A)		N/A

Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

Supports	Туре		Material	
Base	Plate		Steel	
Max Unbraced Length			Comments	
Full Member Length	No bracing assumed.			

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

	Dead	Snow	
Vertical Load	(0.90)	(1.15)	Comments
1 - Point (lb)	4250	5000	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kiones@l120engineering.com	

Level, 3.5X5.25 PSL (10FT) 1 piece(s) 3 1/2" x 5 1/4" 1.8E Parallam® PSL

Post Height: 10'

1

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	34	50	Passed (69%)		
Compression (lbs)	11000	11439	Passed (96%)	1.15	1.0 D + 1.0 S
Base Bearing (lbs)	11000	595350	Passed (2%)		1.0 D + 1.0 S
Bending/Compression	N/A	1	Passed (N/A)		N/A

Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

Supports	Туре		Material	
Base	Plate		Steel	
Max Unbraced Length		Comments		
Full Member Length		No bracing assumed.		

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

	Dead	Snow	
Vertical Load	(0.90)	(1.15)	Comments
1 - Point (lb)	5000	6000	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kiones@l120engineering.com	

Level, 3.5X5.25 PSL (9FT) 1 piece(s) 3 1/2" x 5 1/4" 1.8E Parallam® PSL

Post Height: 9'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	31	50	Passed (62%)		
Compression (lbs)	14000	14007	Passed (100%)	1.15	1.0 D + 1.0 S
Base Bearing (lbs)	14000	595350	Passed (2%)		1.0 D + 1.0 S
Bending/Compression	N/A	1	Passed (N/A)		N/A

Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

Supports	Туре		Material	
Base	Plate		Steel	
Max Unbraced Length	x Unbraced Length		Comments	
Full Member Length		No bracing assumed.		

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

	Dead	Snow	
Vertical Load	(0.90)	(1.15)	Comments
1 - Point (Ib)	6500	7500	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kiones@l120engineering.com	

Level, 3.5X7PSL (10FT) 1 piece(s) 3 1/2" x 7" 1.8E Parallam® PSL

Post Height: 10'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	34	50	Passed (69%)		
Compression (lbs)	15000	15252	Passed (98%)	1.15	1.0 D + 1.0 S
Base Bearing (lbs)	15000	793800	Passed (2%)		1.0 D + 1.0 S
Bending/Compression	N/A	1	Passed (N/A)		N/A

• Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

Supports	Туре		Material	
Base	Plate	e Steel		
Max Unbraced Length			Comments	
Full Member Length		No bracing assumed.		

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

	Dead	Snow	
Vertical Load	(0.90)	(1.15)	Comments
1 - Point (Ib)	7000	8000	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kiones@l120engineering.com	

Level, 3.5X7PSL (9FT) 1 piece(s) 3 1/2" x 7" 1.8E Parallam® PSL

Post Height: 9'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	31	50	Passed (62%)		
Compression (lbs)	18000	18677	Passed (96%)	1.15	1.0 D + 1.0 S
Base Bearing (lbs)	18000	793800	Passed (2%)		1.0 D + 1.0 S
Bending/Compression	N/A	1	Passed (N/A)		N/A

Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

Supports	Туре		Material	
Base	Plate		Steel	
Max Unbraced Length			Comments	
Full Member Length		No bracing assumed.		

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

	Dead	Snow	
Vertical Load	(0.90)	(1.15)	Comments
1 - Point (lb)	8500	9500	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kiones@l120engineering.com	

Level, 5.25X5.25 PSL (10FT) 1 piece(s) 5 1/4" x 5 1/4" 1.8E Parallam® PSL

Post Height: 10'

1

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	23	50	Passed (46%)		
Compression (lbs)	35000	36546	Passed (96%)	1.15	1.0 D + 1.0 S
Base Bearing (lbs)	35000	893025	Passed (4%)		1.0 D + 1.0 S
Bending/Compression	N/A	1	Passed (N/A)		N/A

Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

Supports	Туре		Material	
Base	Plate	e Steel		
Max Upbraced Length			Commonto	
Max Unbraced Length		comments		
Full Member Length		No bracing assumed.		

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

	Dead	Snow	
Vertical Load	(0.90)	(1.15)	Comments
1 - Point (lb)	15000	20000	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kiones@l120enaineerina.com	

Level, 5.25X5.25 PSL (9FT) 1 piece(s) 5 1/4" x 5 1/4" 1.8E Parallam® PSL

Post Height: 9'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	21	50	Passed (41%)		
Compression (lbs)	42500	43634	Passed (97%)	1.15	1.0 D + 1.0 S
Base Bearing (lbs)	42500	893025	Passed (5%)		1.0 D + 1.0 S
Bending/Compression	N/A	1	Passed (N/A)		N/A

• Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

Supports	Туре		Material	
Base	Plate		Steel	
Max Unbraced Length			Comments	
Full Member Length		No bracing assumed.		

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

	Dead	Snow	
Vertical Load	(0.90)	(1.15)	Comments
1 - Point (Ib)	20000	22500	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kiones@l120engineering.com	

Level, 5.25X7 PSL (10FT) 1 piece(s) 5 1/4" x 7" 1.8E Parallam® PSL

Post Height: 10'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	23	50	Passed (46%)		
Compression (lbs)	47500	48728	Passed (97%)	1.15	1.0 D + 1.0 S
Base Bearing (lbs)	47500	1190700	Passed (4%)		1.0 D + 1.0 S
Bending/Compression	N/A	1	Passed (N/A)		N/A

Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

Supports	Туре		Material	
Base	Plate		Steel	
Max Unbraced Length Comments				
Full Member Length		No bracing assumed.		

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

	Dead	Snow	
Vertical Load	(0.90)	(1.15)	Comments
1 - Point (Ib)	20000	27500	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Kenny Jones
L120 Engineering
(817) 727-2136
kiones@l120engineering.com

Level, 5.25X7 PSL (9FT) 1 piece(s) 5 1/4" x 7" 1.8E Parallam® PSL

Post Height: 9'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	21	50	Passed (41%)		
Compression (lbs)	57500	58179	Passed (99%)	1.15	1.0 D + 1.0 S
Base Bearing (lbs)	57500	1190700	Passed (5%)		1.0 D + 1.0 S
Bending/Compression	N/A	1	Passed (N/A)		N/A

Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

Supports	Туре		Material	
Base	Plate		Steel	
Max Unbraced Length			Comments	
Full Member Length		No bracing assumed.		

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

	Dead	Snow	
Vertical Load	(0.90)	(1.15)	Comments
1 - Point (lb)	25000	32500	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Kenny Jones
L120 Engineering
(817) 727-2136
kjones@l120engineering.com

Level, 7X7 PSL (10FT) 1 piece(s) 7" x 7" 1.8E Parallam® PSL

Post Height: 10'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	17	50	Passed (34%)		
Compression (lbs)	100000	100441	Passed (100%)	1.15	1.0 D + 1.0 S
Base Bearing (lbs)	100000	1587600	Passed (6%)		1.0 D + 1.0 S
Bending/Compression	N/A	1	Passed (N/A)		N/A

Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

Steel		
Commonts		
Comments		

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

	Dead	Snow	
Vertical Load	(0.90)	(1.15)	Comments
1 - Point (lb)	50000	50000	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kiones@l120engineering.com	

Level, 7X7 PSL (9FT) 1 piece(s) 7" x 7" 1.8E Parallam® PSL

Post Height: 9'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	15	50	Passed (31%)		
Compression (lbs)	110000	111804	Passed (98%)	1.15	1.0 D + 1.0 S
Base Bearing (lbs)	110000	1587600	Passed (7%)		1.0 D + 1.0 S
Bending/Compression	N/A	1	Passed (N/A)		N/A

Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

Supports	Туре		Material	
Base	Plate		Steel	
Max Unbraced Length		Comments		
Full Member Length		No bracing assumed.		

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

	Dead	Snow	
Vertical Load	(0.90)	(1.15)	Comments
1 - Point (lb)	50000	60000	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Kenny Jones
L120 Engineering
(817) 727-2136
kiones@l120engineering.com

Level, 7X9.25 PSL (10FT) 1 piece(s) 7" x 9 1/4" 2.0E Parallam® PSL

Post Height: 10'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	17	50	Passed (34%)		
Compression (lbs)	125000	149992	Passed (83%)	1.15	1.0 D + 1.0 S
Base Bearing (lbs)	125000	2097900	Passed (6%)		1.0 D + 1.0 S
Bending/Compression	0.89	1	Passed (89%)	1.15	1.0 D + 1.0 S

• Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

• Initial eccentricity applied as per ESR-1387.

Supports	Туре		Material	
Base	Plate		Steel	
Max Unbraced Length			Comments	1
Full Member Length		No bracing assumed.		

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

	Dead	Snow	
Vertical Load	(0.90)	(1.15)	Comments
1 - Point (lb)	50000	75000	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Kenny Jones
L120 Engineering
(817) 727-2136
kiones@l120engineering.com

Level, 7X9.25 PSL (9FT) 1 piece(s) 7" x 9 1/4" 2.0E Parallam® PSL

Post Height: 9'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	15	50	Passed (31%)		
Compression (lbs)	145000	168143	Passed (86%)	1.15	1.0 D + 1.0 S
Base Bearing (lbs)	145000	2097900	Passed (7%)		1.0 D + 1.0 S
Bending/Compression	0.91	1	Passed (91%)	1.15	1.0 D + 1.0 S

• Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

• Initial eccentricity applied as per ESR-1387.

Supports	Туре		Material	
Base	Plate		Steel	
Max Unbraced Length			Comments]
Full Member Length		No bracing assumed.		

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

	Dead	Snow	
Vertical Load	(0.90)	(1.15)	Comments
1 - Point (Ib)	65000	80000	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Kenny Jones
L120 Engineering
(817) 727-2136
kjones@l120engineering.com

